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Python version

There are two versions of this book; one with examples in the R programming language1, and
another with examples in the Python language 2.

This is the Python version.

The files on this website are free to view and download. We release the content under the
Creative Commons Attribution / No Derivatives 4.0 License. If you’d like a physical copy of
the book, you should be able to order it from Sage, when it is published.

We wrote this book in RMarkdown with Quarto, and configured Github to rebuild the textbook
HTML and PDF files from the RMarkdown source.

1https://resampling-stats.github.io/edition-3-r
2https://resampling-stats.github.io/edition-3-python
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Preface to the third edition

The book in your hands, or on your screen, is the third edition of a book originally called
“Resampling: the new statistics”, by Julian Lincoln Simon (1992).

One of the pleasures of writing a new edition of a work by another author, is that we can
praise the previous version of our own book. We will do that, in the next section. Next we
talk about the resampling methods in this book, and their place at the heart of “data science”.
We then discuss what we have changed, what we haven’t, and why. Finally, we make some
suggestions about where this book could fit into your learning and teaching.

What Simon saw

Simon gives the early history of this book in the original preface. He starts with the following
observation:

In the mid-1960’s, I noticed that most graduate students — among them many who
had had several advanced courses in statistics — were unable to apply statistical
methods correctly…

Simon then applied his striking capacity for independent thought to the problem — and came
to two essential conclusions.

The first was that introductory courses in statistics use far too much mathematics. Most
students cannot follow along and quickly get lost, reducing the subject to — as Simon puts it
— “mumbo-jumbo”.

On its own, this was not a new realization. Simon quotes a classic textbook by Wallis and
Roberts (1956), to the effect that teaching statistics through mathematics is like teaching
philosophy in ancient Greek. More recently, other teachers of statistics have come to the
same conclusion. Cobb (2007) argues that it is not practical to teach students the level of
mathematics they would need to understand standard introductory courses. As you will see
below, Cobb also agrees with Simon about the solution.

Simon’s great contribution was to see how we can replace the mathematics, to better reveal the
true heart of statistical thinking. His starting point appears in the original preface: “Beneath
the logic of a statistical inference there necessarily lies a physical process”. Drawing conclusions
from noisy data means building a model of the noisy world, and seeing how that model behaves.
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That model can be physical, where we generate the noisiness of the world using physical devices
like dice and spinners and coin-tosses. Simon used exactly these kinds of devices in his first
experiments in teaching (Simon 1969). He then saw that it was much more efficient to build
these models with simple computer code, and the result was the first and second editions of
this book, with their associated software, the Resampling Stats language.

Simon’s second conclusion follows from the first. Now he had found a path round the unnec-
essary barrier of mathematics, he had got to the heart of what is interesting and difficult in
statistics. Drawing conclusions from noisy data involves a lot of hard, clear thinking. We
should be honest with our students about that; statistics is hard, not because it is obscure (it
need not be), but because it deals with difficult problems. It is exactly that hard logical think-
ing that can make statistics so interesting to our best students; “statistics” is just reasoning
about the world when the world is noisy. Simon writes eloquently about this in a section in
the introduction — “Why is statistics such a difficult subject” (Section 1.6).

We need both of Simon’s conclusions to make progress. We cannot hope to teach two hard
subjects at the same time; mathematics, and statistical reasoning. He replaced the mathemat-
ics with something that is much easier for most of us to reason about. By doing that, he can
concentrate on the real, interesting problem — the hard thinking about data, and the world
it comes from. To quote from a later section in this book (Section 2.4): “Once we get rid
of the formulas and tables, we can see that statistics is a matter of clear thinking, not fancy
mathematics.” Instead of asking “where would I look up the right recipe for this?”, you find
yourself asking “what kind of world do these data come from?” and “How can I reason about
that world?”. Like Simon, we have found that this way of thinking and teaching brings rich
rewards — for insight and practice. We hope and believe that you will find the same.

Resampling and data science

The ideas in Simon’s book, first published in 1992, have found themselves at the center of the
modern movement of data science.

In the section above, we described Simon’s path in discovering physical models as a way of
teaching and explaining statistical tests. He saw that code was the right way to express these
physical models, and therefore, to build and explain statistical tests.

Meanwhile, the wider world of data analysis has been coming to the same conclusion, but from
the opposite direction. Simon saw the power of resampling for explanation, and then that code
was the right way to express these explanations. The data science movement discovered first
that code was essential for data analysis, and then that code was the right way to explain
statistics.

The modern use of the phrase “data science” comes from the technology industry. From around
2007, companies such as LinkedIn and Facebook began to notice that there was a new type of
data analyst that was much more effective than their predecessors. They came to call these
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analysts “data scientists”, because they had learned how to deal with large and difficult data
while working in scientific fields such as ecology, biology, or astrophysics. They had done this
by learning to use code:

Data scientists’ most basic, universal skill is the ability to write code. (Davenport
and Patil 2012)

Further reflection (Donoho 2017) suggested that something deep was going on: that data
science was the expression of a radical change in the way we analyze data, in academia, and
in industry. At the center of this change — was code. Code is the language that allows us to
tell the computer what it should do with data; it is the native language of data analysis.

This insight transforms the way with think of code. In the past, we have thought of code as
a separate, specialized skill, that some of us learn. We take coding courses — we “learn to
code”. But if we us code as the fundamental language for analyzing data, then we need code
to express what data analysis does, and explain how it works. Here we “code to learn”. Code
is not an aim in itself, but a language we can use to express the simple ideas behind data
analysis and statistics.

Thus the data science movement started from code as the foundation for data analysis, to
using code to explain statistics. It ends at the same place as this book, from the other side of
the problem.

The growth of data science is the inevitable result of taking computing seriously in education
and research. We have already cited Cobb (2007) on the impossibility of teaching the mathe-
matics students would need in order to understand traditional statistics courses. He goes on
to explain why there is so much mathematics, and why we should remove it. In the age before
ubiquitous computing, we needed mathematics to simplify calculations that we could not prac-
tically do by hand. Now we have great computing power in our phones and laptops, we do not
have this constraint, and we can use simpler ideas from resampling methods to solve the same
problems. As Simon shows, these are much easier to describe and understand. Data science,
and teaching with resampling, are the obvious consequences of ubiquitous computing.

What we changed

This diversion, through data science, leads us to the changes that we have made for the new
edition. The previous edition of this book is still excellent, and you can read it freely at
http://www.resample.com/intro-text-online. It continues to be ahead of its time, and
ahead of our time. Its one major drawback is that Simon bases much of the book around code
written in a special language that he developed with Dan Weidenfeld, called Resampling Stats3.
The Resampling Stats language is well designed for expressing the steps in simulating worlds

3If you are interested, https://statistics101.sourceforge.io has a free modern version of the original Resampling
Stats language.
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that include elements of randomness, and it was a useful contribution at the time that it was
written. Since then, and particularly in the last decade, there have been many improvements in
more powerful and general languages, such as Python and R. These languages are particularly
suitable for beginners in data analysis, and they come with a huge range of tools and libraries
for a many tasks in data analysis, including the kinds of models and simulations you will see
in this book. We have updated the book to use Python, instead of Resampling Stats. If you
already know Python or a similar language, such as R, you will have a big head start in reading
this book, but even if you do not, we have written the book so it will be possible to pick up
the Python code that you need to understand and build the kind of models that Simon uses.
The advantage to us, your authors, is that we can use the very powerful tools associated with
Python to make it easier to run and explain the code. The advantage to you, our readers, is
that you can also learn these tools, and the Python language. They will serve you well for the
rest of your career in data analysis.

Our second and minor change is that we have added some content that Simon specifically
left out. Simon knew that his approach was radical for its time, and designed his book as a
commentary, correction, and addition to traditional courses in statistics. He assumes some
familiarity with the older world of normal distributions, standard deviations, and correlation.
We want this book to useful to the true beginner, so we have added some explanation of
standard deviation, standard scores and the correlation coefficient. We have also updated
some of the examples.

In this third edition, we have deliberately been light in our edits, to preserve the fresh and
creative flavor of Simon’s book, as he worked through the landscape of traditional statistics
with his radical eye.

The third edition is the director’s cut, where Simon is the director

As you see from the section above, the largest change for this edition is to update the code
sections to use Python. We intend this edition to be as close as possible to the book that Simon
intended, but updated to use modern tools and a standard, widely-used programming language.
Read this edition as our service to Simon for his visionary work — this is Simon’s book, and,
for this edition, we (Matthew and Stéfan) intend to serve as his editors and interpreters. We
release this edition so you can see Simon’s ideas updated to current technology.

Who should read this book, and when

As you have seen in the previous sections, this book uses a radical approach to explaining
statistical inference — the science of drawing conclusions from noisy data. This approach is
quickly becoming the standard in teaching of data science, partly because it is so much easier
to explain, and partly because of the increasing role of code in data analysis.
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Our book teaches the basics of using the Python language, basic probability, statistical infer-
ence through simulation and resampling, confidence intervals, and basic Bayesian reasoning,
all through the use of model building in simple code.

Statistical inference is an important part of research methods for many subjects; so much so,
that research methods courses may even be called “statistics” courses, or include “statistics”
components. This book covers the basic ideas behind statistical inference, and how you can
apply these ideas to draw practical statistical conclusions. We recommend it to you as an
introduction to statistics. If you are a teacher, we suggest you consider this book as a primary
text for first statistics courses. We hope you will find, as we have, that this method of explaining
through building is much more productive and satisfying than the traditional method of trying
to convey some “intuitive” understanding of fairly complicated mathematics. We hope you
will see the relationship of these resampling techniques to traditional methods. Even if you
do need to teach your students t-tests, and analysis of variance, we hope you will share our
experience that this way of explaining the underlying ideas is much more compelling than the
traditional approach.

Simon wrote this book for students and teachers who were interested to discover a radical
new method of explanation in statistics and probability. The book will still work well for that
purpose. If you have done a statistics course, but you kept feeling that you did not really
understand it, or there was something fundamental missing that you could not put your finger
on — well done for sensing the problem! — then, please, read this book. There is a good
chance that it will give you deeper understanding, and reveal the logic behind the often arcane
formulations of traditional statistics.

Our book is only part of a data science course. There are several important aspects to data
science. A data science course needs all the elements we list above, but it should also cover the
process of reading, cleaning, and reorganizing data using Python, or another language, such as
R. It may also discuss the problems of experimental design, and cover prediction techniques,
such as classification with machine learning, as well as data exploration with plots, tables, and
summary measures. We do not cover those here. If you are teaching a full data science course,
we suggest that you use this book as your first text, as an introduction to code, and statistical
inference, and then add some of the many excellent resources on these other aspects of data
science that assume some knowledge of statistics and programming.

The book as a public resource

Simon was passionate about this approach to teaching, as you can see from his preface to
the second edition, and from his generosity in publishing the second edition on the web. We
feel the same way, and we have released the third edition in the same way. Technology and
technical culture have evolved since the second edition, and we can now give you the tools to
edit and improve this book, for the benefit of all our readers. If you see an error in the book,
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or you have thought of a better way of explaining something, please send us a fix or an edit.
See Appendix E for the procedure, and accept our thanks in advance.

Welcome to resampling

We hope you will agree that Simon’s insights for understanding and explaining are — really
extraordinary. We are catching up slowly. If you are like us, your humble authors, you will find
that Simon has succeeded in explaining what statistics is, and exactly how it works, to anyone
with the patience to work through the examples, and think hard about the problems. If you
have that patience, the rewards are great. Not only will you understand statistics down to its
deepest foundations, but you will be able to think of your own tests, for your own problems,
and have the tools to implement them yourself.

Matthew Brett

Stéfan van der Walt
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Preface to the second edition

Note

This is a slightly edited version of the original preface to the second edition. We removed
an introduction to the original custom software, and a look ahead at the original contents
of the book.

Brief history of the resampling method

This book describes a revolutionary — but now fully accepted — approach to probability and
statistics. Monte Carlo resampling simulation takes the mumbo-jumbo out of statistics and
enables even beginning students to understand completely everything that is done.

Before we go further, let’s make the discussion more concrete with an example. Ask a class:
What are the chances that three of a family’s first four children will be girls? After various
entertaining class suggestions about procreating four babies, or surveying families with four
children, someone in the group always suggests flipping a coin. This leads to valuable student
discussion about whether the probability of a girl is exactly half (there are about 105 males
born for each 100 females), whether .5 is a satisfactory approximation, whether four coins
flipped once give the same answer as one coin flipped four times, and so on. Soon the class
decides to take actual samples of coin flips. And students see that this method quickly arrives
at estimates that are accurate enough for most purposes. Discussion of what is “accurate
enough” also comes up, and that discussion is valuable, too.

The Monte Carlo method itself is not new. Near the end of World War II, a group of physicists
at the Rand Corp. began to use random-number simulations to study processes too complex
to handle with formulas. The name “Monte Carlo” came from the analogy to the gambling
houses on the French Riviera. The application of Monte Carlo methods in teaching statistics
also is not new. Simulations have often been used to illustrate basic concepts. What is new
and radical is using Monte Carlo methods routinely as problem-solving tools for everyday
problems in probability and statistics.

From here on, the related term resampling will be used throughout the book. Resampling
refers to the use of the observed data or of a data generating mechanism (such as a die)
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to produce new hypothetical samples, the results of which can then be analyzed. The term
computer-intensive methods also is frequently used to refer to techniques such as these.

The history of resampling is as follows: In the mid-1960’s, I noticed that most graduate
students — among them many who had had several advanced courses in statistics — were
unable to apply statistical methods correctly in their social science research. I sympathized
with them. Even many experts are unable to understand intuitively the formal mathematical
approach to the subject. Clearly, we need a method free of the formulas that bewilder almost
everyone.

The solution is as follows: Beneath the logic of a statistical inference there necessarily lies a
physical process. The resampling methods described in this book allow us to work directly
with the underlying physical model by simulating it, rather than describing it with formulae.
This general insight is also the heart of the specific technique Bradley Efron felicitously labeled
‘the bootstrap’ (1979), a device I introduced in 1969 that is now the most commonly used, and
best known, resampling method.

The resampling approach was first tried with graduate students in 1966, and it worked ex-
ceedingly well. Next, under the auspices of the father of the “new math,” Max Beberman, I
“taught” the method to a class of high school seniors in 1967. The word “taught” is in quo-
tation marks because the pedagogical essence of the resampling approach is that the students
discover the method for themselves with a minimum of explicit instruction from the teacher.

The first classes were a success and the results were published in 1969 (Simon and Holmes
1969). Three PhD experiments were then conducted under Kenneth Travers’ supervision, and
they all showed overwhelming superiority for the resampling method (Simon, Atkinson, and
Shevokas 1976). Subsequent research has confirmed this success.

The method was first presented at some length in the 1969 edition of my book Basic Research
Methods in Social Science (Simon 1969) (third edition with Paul Burstein (1985)).

For some years, the resampling method failed to ignite interest among statisticians. While
many factors (including the accumulated intellectual and emotional investment in existing
methods) impede the adoption of any new technique, the lack of readily available computing
power and tools was an obstacle. (The advent of the personal computer in the 1980s changed
that, of course.)

Then in the late 1970s, Efron began to publish formal analyses of the bootstrap — an im-
portant resampling application (Efron 1979). Interest among statisticians has exploded since
then, in conjunction with the availability of easy, fast, and inexpensive computer simulations.
The bootstrap has been the most widely used, but across-the-board application of computer
intensive methods now seems at hand. As Noreen (1989) noted, “there is a computer-intensive
alternative to just about every conventional parametric and non-parametric test.” And the
bootstrap method has now been hailed by an official American Statistical Association volume
as the only “great breakthrough” in statistics since 1970 (Kotz and Johnson 1992).
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It seems appropriate now to offer the resampling method as the technique of choice for begin-
ning students as well as for the advanced practitioners who have been exploring and applying
the method.

Though the term “computer-intensive methods” is nowadays used to describe the techniques
elaborated here, this book can be read either with or without the accompanying use of the
computer. However, as a practical matter, users of these methods are unlikely to be content
with manual simulations if a quick and simple computer-program alternative is available.

The ultimate test of the resampling method is how well you, the reader, learn it and like
it. But knowing about the experiences of others may help beginners as well as experienced
statisticians approach the scary subject of statistics with a good attitude. Students as early as
junior high school, taught by a variety of instructors and in other languages as well as English,
have — in a matter of 6 or 12 short hours — learned how to handle problems that students
taught conventionally do not learn until advanced university courses. And several controlled
experimental studies show that, on average, students who learn this method are more likely
to arrive at correct solutions than are students who are taught conventional methods.

Best of all, the experiments comparing the resampling method against conventional methods
show that students enjoy learning statistics and probability this way, and they don’t suffer
statistics panic. This experience contrasts sharply with the reactions of students learning by
conventional methods. (This is true even when the same teachers teach both methods as part
of an experiment.)

A public offer: The intellectual history of probability and statistics began with gambling
games and betting. Therefore, perhaps a lighthearted but very serious offer would not seem
inappropriate here: I hereby publicly offer to stake $5,000 in a contest against any teacher of
conventional statistics, with the winner to be decided by whose students get the larger number
of simple and complex numerical problems correct, when teaching similar groups of students
for a limited number of class hours — say, six or ten. And if I should win, as I am confident
that I will, I will contribute the winnings to the effort to promulgate this teaching method.
(Here it should be noted that I am far from being the world’s most skillful or charming teacher.
It is the subject matter that does the job, not the teacher’s excellence.) This offer has been in
print for many years now, but no one has accepted it.

The early chapters of the book contain considerable discussion of the resampling method, and
of ways to teach it. This material is intended mainly for the instructor; because the method is
new and revolutionary, many instructors appreciate this guidance. But this didactic material
is also intended to help the student get actively involved in the learning process rather than
just sitting like a baby bird with its beak open waiting for the mother bird to drop morsels
into its mouth. You may skip this didactic material, of course, and I hope that it does not get
in your way. But all things considered, I decided it was better to include this material early on
rather than to put it in the back or in a separate publication where it might be overlooked.
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Brief history of statistics

In ancient times, mathematics developed from the needs of governments and rich men to
number armies, flocks, and especially to count the taxpayers and their possessions. Up until
the beginning of the 20th century, the term statistic meant the number of something — soldiers,
births, taxes, or what-have-you. In many cases, the term statistic still means the number of
something; the most important statistics for the United States are in the Statistical Abstract
of the United States. These numbers are now known as descriptive statistics. This book will
not deal at all with the making or interpretation of descriptive statistics, because the topic is
handled very well in most conventional statistics texts.

Another stream of thought entered the field of probability and statistics in the 17th century
by way of gambling in France. Throughout history people had learned about the odds in
gambling games by repeated plays of the game. But in the year 1654, the French nobleman
Chevalier de Méré asked the great mathematician and philosopher Pascal to help him develop
correct odds for some gambling games4. Pascal, the famous Fermat, and others went on to
develop modern probability theory.

Later these two streams of thought came together. Researchers wanted to know how accurate
their descriptive statistics were — not only the descriptive statistics originating from sample
surveys, but also the numbers arising from experiments. Statisticians began to apply the
theory of probability to the accuracy of the data arising from sample surveys and experiments,
and that became the theory of inferential statistics.

Here we find a guidepost: probability theory and statistics are relevant whenever there is
uncertainty about events occurring in the world, or in the numbers describing those events.

Later, probability theory was also applied to another context in which there is uncertainty —
decision-making situations. Descriptive statistics like those gathered by insurance companies
— for example, the number of people per thousand in each age bracket who die in a five-year
period — have been used for a long time in making decisions such as how much to charge
for insurance policies. But in the modern probabilistic theory of decision-making in business,
politics and war, the emphasis is different; in such situations the emphasis is on methods
of combining estimates of probabilities that depend upon each other in complicated ways in
order to arrive at the best decision. This is a return to the gambling origins of probability
and statistics. In contrast, in standard insurance situations (not including war insurance or
insurance on a dancer’s legs) the probabilities can be estimated with good precision without
complex calculation, on the basis of a great many observations, and the main statistical task is
gathering the information. In business and political decision-making situations, however, one
often works with probabilities based on very limited information — often little better than
guesses. There the task is how best to combine these guesses about various probabilities into
an overall probability estimate.

4https://en.wikipedia.org/wiki/Problem_of_points
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Estimating probabilities with conventional mathematical methods is often so complex that
the process scares many people. And properly so, because its difficulty leads to errors. The
statistics profession worries greatly about the widespread use of conventional tests whose
foundations are poorly understood. The wide availability of statistical computer packages
that can easily perform these tests with a single command, regardless of whether the user
understands what is going on or whether the test is appropriate, has exacerbated this problem.
This led John Tukey to turn the field toward descriptive statistics with his techniques of
“exploratory data analysis” (Tukey 1977). These descriptive methods are well described in
many texts.

Probabilistic analysis also is crucial, however. Judgments about whether the government
should allow a new medicine on the market, or whether an operator should adjust a screw
machine, require more than eyeball inspection of data to assess the chance variability. But
until now the teaching of probabilistic statistics, with its abstruse structure of mathematical
formulas, mysterious tables of calculations, and restrictive assumptions concerning data dis-
tributions — all of which separate the student from the actual data or physical process under
consideration — have been an insurmountable obstacle to intuitive understanding.

Now, however, the resampling method enables researchers and decision-makers in all walks
of life to obtain the benefits of statistics and predictability without the shortcomings of con-
ventional methods, free of mathematical formulas and restrictive assumptions. Resampling’s
repeated experimental trials on the computer enable the data (or a data-generating mechanism
representing a hypothesis) to express their own properties, without difficult and misleading
assumptions.

So — good luck. I hope that you enjoy the book and profit from it.

Julian Lincoln Simon

1997
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1 Introduction

1.1 Uses of Probability and Statistics

This chapter introduces you to probability and statistics. First come examples of the kinds of
practical problems that this knowledge can solve for us. One reason that the term “statistic”
often scares and confuses people is that the term has several sorts of meanings. We discuss
the meanings of “statistics” in the section “Types of statistics”. Then comes a discussion on
the relationship of probabilities to decisions. Following this we talk about the limitations of
probability and statistics. And last is a discussion of why statistics can be such a difficult
subject. Most important, this chapter describes the types of problems the book will tackle.

At the foundation of sound decision-making lies the ability to make accurate estimates of
the probabilities of future events. Probabilistic problems confront everyone — a company
owner considering whether to expand their business, to the scientist testing a vaccine, to the
individual deciding whether to buy insurance.

1.2 What kinds of problems shall we solve?

These are some examples of the kinds of problems that we can handle with the methods
described in this book:

1. You are a doctor trying to develop a treatment for Covid. Currently you are working
on a medicine labeled AntiAnyVir. You have data from patients to whom medicine An-
tiAnyVir was given. You want to judge on the basis of those results whether AntiAnyVir
really improves survival or whether it is no better than a sugar pill.

2. You are the campaign manager for the Republicrat candidate for President of the United
States. You have the results from a recent poll taken in New Hampshire. You want to
know the chance that your candidate would win in New Hampshire if the election were
held today.

3. You are the manager and part owner of one of several contractors providing ambulances
to a hospital. You own 16 ambulances. Based on past experience, the chance that any
one ambulance will be unfit for service on any given day is about one in ten. You want
to know the chance on a particular day — tomorrow — that three or more of them will
be out of action.
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4. You are an environmental scientist monitoring levels of phosphorus pollution in a lake.
The phosphorus levels have been fluctuated around a relatively low level until recently,
but they have been higher in the last few years. Do these recent higher levels indicate
some important change or can we put them down to ordinary variation from year to
year?

The core of all these problems, and of the others that we will deal with in this book, is that
you want to know the “chance” or “probability” — different words for the same idea — that
some event will or will not happen, or that something is true or false. To put it another
way, we want to answer questions about “What is the probability that…?”, given the body of
information that you have in hand.

The question “What is the probability that…?” is usually not the ultimate question that
interests us at a given moment.

Eventually, a person wants to use the estimated probability to help make a decision concerning
some action one might take. These are the kinds of decisions, related to the questions about
probability stated above, that ultimately we would like to make:

1. Should you (the researcher) advise doctors to prescribe medicine AntiAnyVir for Covid
patients, or, should you (the researcher) continue to study AntiAnyVir before releasing
it for use? A related matter: should you and other research workers feel sufficiently
encouraged by the results of medicine AntiAnyVir so that you should continue research
in this general direction rather than turning to some other promising line of research?
These are just two of the possible decisions that might be influenced by the answer to the
question about the probability that medicine AntiAnyVir is effective in treating Covid.

2. Should you advise the Republicrat presidential candidate to go to New Hampshire to cam-
paign? If the poll tells you conclusively that she or he will not win in New Hampshire,
you might decide that it is not worthwhile investing effort to campaign there. Similarly,
if the poll tells you conclusively that they surely will win in New Hampshire, you prob-
ably would not want to campaign further there. But if the poll is not conclusive in one
direction or the other, you might choose to invest the effort to campaign in New Hamp-
shire. Analysis of the chances of winning in New Hampshire based on the poll data can
help you make this decision sensibly.

3. Should your company buy more ambulances? Clearly the answer to this question is
affected by the probability that a given number of your ambulances will be out of action
on a given day. But of course this estimated probability will be only one part of the
decision.

4. Should we search for new causes of phosphorus pollution as a result of the recent mea-
surements from the lake? If the causes have not changed, and the recent higher values
were just the result of ordinary variation, our search will end up wasting time and money
that could have been better spent elsewhere.
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The kinds of questions to which we wish to find probabilistic and statistical answers may
be found throughout the social, biological and physical sciences; in business; in politics; in
engineering; and in most other forms of human endeavor.

1.3 Types of statistics

The term statistics sometimes causes confusion and therefore needs explanation.

Statistics can mean two related things. It can refer to a certain sort of number — of which
more below. Or it can refer to the field of inquiry that studies these numbers.

A statistic is a number that we can calculate from a larger collection of numbers we are
interested in. For example, table Table 1.1 has some yearly measures of “soluble reactive
phosphorus” (SRP) from Lough Erne — a lake in Ireland (Zhou, Gibson, and Foy 2000).

Table 1.1: Soluble Reactive Phosphorus in Lough Erne

Year SRP
1974 26.2
1975 22.8
1976 37.2
1983 54.7
1984 37.7
1987 54.3
1989 35.7
1991 72.0
1992 85.1
1993 86.7
1994 93.3
1995 107.2
1996 80.3
1997 70.7

We may want to summarize this set of SRP measurements. For example, we could add up all
the SRP values to give the total. We could also divide the total by the number of measurements,
to give the average. Or we could measure the spread of the values by finding the minimum and
the maximum — see table Table 1.2). All these numbers are descriptive statistics, because they
are numbers that summarize and therefore describe the collection of SRP measurements.
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Table 1.2: Statistics for SRP levels

Descriptive statistics for SRP
Total 863.9
Mean 61.7
Minimum 22.8
Maximum 107.2

Descriptive statistics are nothing new to you; you have been using many of them all your
life.

We can calculate other numbers that can be useful for drawing conclusions or inferences from a
collection of numbers; these are inferential statistics. Inferential statistics are often probability
values that give the answer to questions like “What are the chances that …”.

For example, imagine we suspect there was some environmental change in 1990. We see that
the average SRP value before 1990 was 38.4 and the average SRP value after 1990 was 85.
That gives us a difference in the average of 46.6. But, could this difference be due to chance
fluctuations from year to year? Were we just unlucky in getting a few larger measurements in
later years? We could use methods that you will see in this book to calculate a probability to
answer that question. The probability value is an inferential statistic, because we can use it
to draw an inference about the measures.

Inferential statistics use descriptive statistics as their input. Inferential statistics can be used
for two purposes: to aid scientific understanding by estimating the probability that a statement
is true or not, and to aid in making sound decisions by estimating which alternative among a
range of possibilities is most desirable.

1.4 Probabilities and decisions

There are two differences between questions about probabilities and the ultimate decision
problems:

1. Decision problems always involve evaluation of the consequences — that is, taking into
account the benefits and the costs of the consequences — whereas pure questions about
probabilities are estimated without evaluations of the consequences.

2. Decision problems often involve a complex combination of sets of probabilities and con-
sequences, together with their evaluations. For example: In the case of the contractor’s
ambulances, it is clear that there will be a monetary loss to the contractor if she makes
a commitment to have 14 ambulances available for tomorrow and then cannot produce
that many. Furthermore, the contractor must take into account the further consequence
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that there may be a loss of goodwill for the future if she fails to meet her obligations
tomorrow — and then again there may not be any such loss; and if there is such loss
of goodwill it might be a loss worth $10,000 or $20,000 or $30,000. Here the decision
problem involves not only the probability that there will be fewer than 14 ambulances
tomorrow but also the immediate monetary loss and the subsequent possible losses of
goodwill, and the valuation of all these consequences.

Continuing with the decision concerning whether to do more research on medicine AntiAnyVir:
If you do decide to continue research on AntiAnyVir, (a) you may, or (b) you may not, come
up with an important general treatment for viral infections within, say, the next 3 years.
If you do come up with such a general treatment, of course it will have very great social
benefits. Furthermore, (c) if you decide not to do further research on AntiAnyVir now, you
can direct your time and that of other people to research in other directions, with some
chance that the other research will produce a less-general but nevertheless useful treatment
for some relatively infrequent viral infections. Those three possibilities have different social
benefits. The probability that medicine AntiAnyVir really has some benefit in treating Covid,
as judged by your prior research, obviously will influence your decision on whether or not to
do more research on medicine AntiAnyVir. But that judgment about the probability is only
one part of the overall web of consequences and evaluations that must be taken into account
when making your decision whether or not to do further research on medicine AntiAnyVir.

Why does this book limit itself to the specific probability questions when ultimately we are
interested in decisions? A first reason is division of labor. The more general aspects of the
decision-making process in the face of uncertainty are treated well in other books. This book’s
special contribution is its new approach to the crucial process of estimating the chances that
an event will occur.

Second, the specific elements of the overall decision-making process taught in this book belong
to the interrelated subjects of probability theory and statistics. Though probabilistic and
statistical theory ultimately is intended to be part of the general decision-making process,
often only the estimation of probabilities is done systematically, and the rest of the decision-
making process — for example, the decision whether or not to proceed with further research on
medicine AntiAnyVir — is done in informal and unsystematic fashion. This is regrettable, but
the fact that this is standard practice is an additional reason why the treatment of statistics
and probability in this book is sufficiently complete.

A third reason that this book covers only statistics and not numerical reasoning about decisions
is because most college and university statistics courses and books are limited to statistics.

1.5 Limitations of probability and statistics

Statistical testing is not equivalent to research, and research is not the same as statistical test-
ing. Rather, statistical inference is a handmaiden of research, often but not always necessary
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in the research process.

A working knowledge of the basic ideas of statistics, especially the elements of probability, is
unsurpassed in its general value to everyone in a modern society. Statistics and probability
help clarify one’s thinking and improve one’s capacity to deal with practical problems and to
understand the world. To be efficient, a social scientist or decision-maker is almost certain to
need statistics and probability.

On the other hand, important research and top-notch decision-making have been done by
people with absolutely no formal knowledge of statistics. And a limited study of statistics
sometimes befuddles students into thinking that statistical principles are guides to research
design and analysis. This mistaken belief only inhibits the exercise of sound research thinking.
Alfred Kinsey long ago put it this way:

… no statistical treatment can put validity into generalizations which are based on
data that were not reasonably accurate and complete to begin with. It is unfor-
tunate that academic departments so often offer courses on the statistical manip-
ulation of [data from human behavior] to students who have little understanding
of the problems involved in securing the original data. … When training in these
things replaces or at least precedes some of the college courses on the mathemati-
cal treatment of data, we shall come nearer to having a science of human behavior.
(Kinsey, Pomeroy, and Martin 1948, p 35).

In much — even most — research in social and physical sciences, statistical testing is not nec-
essary. Where there are large differences between different sorts of circumstances for example,
if a new medicine cures 90 patients out of 100 and the old medicine cures only 10 patients out
of 100 — we do not need refined statistical tests to tell us whether or not the new medicine
really has an effect. And the best research is that which shows large differences, because it
is the large effects that matter. If the researcher finds that s/he must use refined statistical
tests to reveal whether there are differences, this sometimes means that the differences do not
matter much.

To repeat, then, some or even much research — especially in the physical and biological sciences
— does not need the kind of statistical manipulation that will be described in this book. But
most decision problems do need the kind of probabilistic and statistical input that is described
in this book.

Another matter: If the raw data are of poor quality, probabilistic and statistical manipulation
cannot be very useful. In the example of the contractor and her ambulances, if the contractor’s
estimate that a given ambulance has a one-in-ten chance of being unfit for service out-of-order
on a given day is very inaccurate, then our calculation of the probability that three or more
ambulances will be out of order on a given day will not be helpful, and may be misleading.
To put it another way, one cannot make bread without flour, yeast, and water. And good raw
data are the flour, yeast and water necessary to get an accurate estimate of a probability. The
most refined statistical and probabilistic manipulations are useless if the input data are poor
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— the result of unrepresentative samples, uncontrolled experiments, inaccurate measurement,
and the host of other ways that information gathering can go wrong. (See Simon and Burstein
(1985) for a catalog of the obstacles to obtaining good data.) Therefore, we should constantly
direct our attention to ensuring that the data upon which we base our calculations are the
best it is possible to obtain.

1.6 Why is Statistics Such a Difficult Subject?

Why is statistics such a tough subject for so many people?

“Among mathematicians and statisticians who teach introductory statistics, there is a tendency
to view students who are not skillful in mathematics as unintelligent,” say two of the authors
of a popular introductory text (McCabe and McCabe 1989, p 2). As these authors imply, this
view is out-and-out wrong; lack of general intelligence on the part of students is not the root
of the problem.

Scan this book and you will find almost no formal mathematics. Yet nearly every student
finds the subject very difficult — as difficult as anything taught at universities. The root of
the difficulty is that the subject matter is extremely difficult. Let’s find out why.

It is easy to find out with high precision which movie is playing tonight at the local cinema;
you can look it up on the web or call the cinema and ask. But consider by contrast how
difficult it is to determine with accuracy:

1. Whether we will save lives by recommending vitamin D supplements for the whole popu-
lation as protection against viral infections. Some evidence suggests that low vitamin D
levels predispose to more severe lung infections, and that taking supplements can help
(Martineau et al. 2017). But, how certain can we be of the evidence? How safe are the
supplements? Does the benefit, and the risk, differ by ethnicity?

2. What will be the result of more than a hundred million Americans voting for president a
month from now; the best attempt usually is a sample of 2000 people, selected in some
fashion or another that is far from random, weeks before the election, asked questions
that are by no means the same as the actual voting act, and so on;

3. How men feel about women and vice versa.

The cleverest and wisest people have pondered for thousands of years how to obtain answers to
questions like these, and made little progress. Dealing with uncertainty was completely outside
the scope of the ancient philosophers. It was not until two or three hundred years ago that
people began to make any progress at all on these sorts of questions, and it was only about
one century ago that we began to have reasonably competent procedures — simply because
the problems are inherently difficult. So it is no wonder that the body of these methods is
difficult.
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So: The bad news is that the subject is extremely difficult. The good news is that you — and
that means you — can understand it with hard thinking, even if you have no mathematical
background beyond arithmetic and you think that you have no mathematical capability. That’s
because the difficulty lies in such matters as pin-pointing the right question, but not in any
difficulties of mathematical manipulation.
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2 The resampling method

This chapter is a brief introduction to the resampling method of solving problems in probability
and statistics. We’re going to dive right in and solve a problem hands-on.

You will see that the resampling method is easy to understand and apply: all it requires
is to understand the physical problem. You then simulate a statistical model of the physical
problem with techniques that are intuitively obvious, and estimate the probability sought with
repeated random sampling.

After finding a solution, we will look at the more conventional formulaic approach, and how
that compares. Here’s the spoiler: it requires you to understand complex formulas, and to
choose the correct one from many.

After reading this chapter, you will understand why we are excited about the resampling
method, and why it will allow you to approach even even hard problems without knowing
sophisticated statistic techniques.

2.1 The resampling approach in action

Recall the problem from section Section 1.2 in which the contractor owns 16 ambulances:

You are the manager and part owner of one of several contractors providing am-
bulances to a hospital. You own 16 ambulances. Based on past experience, the
chance that any one ambulance will be unfit for service on any given day is about
one in ten. You want to know the chance on a particular day — tomorrow — that
three or more of them will be out of action.

The resampling approach produces the estimate as follows.

2.1.1 Randomness from physical methods

We collect 10 coins, and mark one of them with a pen or pencil as being the coin that represents
“out-of-order;” the other nine coins stand for “in operation”. For any one ambulance, this set
of 10 coins provides a “model” for the one-in-ten chance — a probability of .10 (10 percent)
— of it being out of order on a given day. We put the coins into a little jar or bucket.
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For ambulance #1, we draw a single coin from the bucket. This coin represents whether
that ambulance is going to be broken tomorrow. If we draw the marked coin, we label this
ambulance as out-of-order, otherwise we label the ambulance as in-operation. After replacing
the coin and shaking the bucket, we repeat the same procedure for ambulance #2, ambulance
#3 and so forth. Having repeated the procedure 16 times, we now have a representation of
all ambulances for a single day.

We can now repeat this whole process as many times as we like: each time, we come up with
a representation for a different day, telling us how many ambulances will be out-of-service on
that day.

After collecting evidence for, say, 50 experimental days we determine the proportion of the
experimental days on which three or more ambulances are out of order. That proportion is an
estimate of the probability that three or more ambulances will be out of order on a given day
— the answer we seek. This procedure is an example of Monte Carlo simulation, which is the
heart of the resampling method of statistical estimation.

A more direct way to answer this question would be to examine the firm’s actual records
for the past 100 days or, better, 500 days (if that’s available) to determine how many days
had three or more ambulances out of order. But the resampling procedure described above
gives us an estimate even if we do not have such long-term information. This is realistic; it is
frequently the case in the real world that we must make estimates on the basis of insufficient
history about an event.

A quicker resampling method than the coins could be obtained with 16 ten-sided dice or
spinners (like those found in Dungeons & Dragons games). For each die, we identify one of its
ten sides as “out-of-order”.

Standard 10-sided dice have the numbers 0 through 9 on their faces, rather than 1 through 10.
Figure 2.1 shows a standard 10-sided die:

We decide, arbitrarily, that the 9 side means “out-of-order”. We could even put a little bit of
paint on the 9 side to remind us. The die represents an ambulance. If we roll the die, and
get this face, this indicates that the ambulance was out of order. If we get any of the other
faces — 0 through 8 — this ambulance was in working order. A single throw of all 16 dice will
be our experimental trial that represents a single day; we just have to count whether three or
more ambulances turn up “out of order”. Figure 2.2 show the result of one trial — throwing
16 dice:

As you can see, the trial in Figure 2.2 gave us a single 9, so there was only one ambulance out
of order.

In a hundred throws of the 16 dice — which probably takes less than 5 minutes — we can get
a fast and reasonably accurate answer to our question.
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Figure 2.1: 10-sided die
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Figure 2.2: 16 10-sided dice
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2.2 Randomness from your computer

Computers make it easy to generate random numbers for resampling.

What do we mean by random?

Random numbers are numbers where it is impossible to predict which number is coming
next. If we ask the computer for a number between 0 and 9, we will get one of the
numbers 0 though 9, but we cannot do any better than that in predicting which number
it will give us. There is an equal (10%) chance we will get any of the numbers 0 through
9 — just as there is when we roll a fair 10-sided die. We will go into more detail about
what exactly we mean by random and chance later in the book (Section 3.8).

We can use random numbers from computers to simulate our problem. For example, we can
ask the computer to choose a random number between 0 and 9 to represent one ambulance.
Let’s say the number 9 represents “out-of-order” and 0 through 8 “in operation”, then any one
random number gives us a trial observation for a single ambulance. To get an experimental
trial for a single day we look at 16 numbers and count how many of them are 9. We then look
at, say, one hundred sets of 16 numbers and count the proportion of sets whose 16 numbers
show three or more ambulances being “out-of-order”. Once again, that proportion estimates
the probability that three or more ambulances will be out-of-order on any given day.

Soon we will do all these steps with some Python code, but for now, consider Table 2.1. In
each row, we placed 16 numbers, each one representing an ambulance. We added 25 such rows,
each representing a simulation of one day.

Table 2.1: 25 simulations of 16 ambulances

Day A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
1 5 4 4 5 9 8 2 9 1 5 8 2 1 8 2 6
2 6 5 0 5 2 7 4 4 6 3 9 5 2 5 8 1
3 2 5 4 9 0 5 8 4 5 9 1 2 8 7 5 3
4 8 9 2 6 9 0 7 2 5 2 2 2 2 4 7 6
5 0 4 5 1 3 7 6 3 2 9 5 8 0 6 0 4
6 7 4 8 9 1 5 1 2 3 6 4 8 5 1 7 5
7 0 9 8 7 7 3 9 1 7 7 9 9 6 8 4 7
8 7 2 0 2 4 6 9 2 3 9 5 3 7 1 3 0
9 8 0 0 3 3 0 0 3 8 6 4 6 0 4 6 7

10 9 7 1 9 8 1 8 7 0 4 4 7 0 5 6 1
11 0 9 0 7 0 1 6 0 8 6 0 3 1 9 8 3
12 1 2 7 8 8 6 1 0 8 3 4 5 8 8 4 9
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13 1 0 8 6 9 2 0 7 7 0 0 7 9 2 3 0
14 0 0 5 5 4 0 1 7 8 2 0 8 3 2 2 4
15 6 3 9 6 8 8 7 6 6 4 3 8 7 0 4 3
16 4 2 6 9 0 0 8 5 3 1 5 1 8 7 6 8
17 3 6 3 5 3 1 2 4 3 1 6 2 9 5 2 4
18 0 6 1 9 0 7 9 4 2 0 1 5 8 5 8 1
19 3 2 2 7 8 2 2 1 2 9 2 5 9 9 6 0
20 6 3 3 2 6 8 3 9 0 5 7 8 8 3 8 6
21 8 3 0 0 1 5 3 7 0 9 6 4 1 2 5 0
22 1 8 7 1 7 1 2 6 4 3 0 0 7 5 6 2
23 9 2 8 0 3 1 9 1 5 6 5 9 8 4 3 0
24 6 7 4 9 4 2 0 6 1 0 4 1 0 5 5 9
25 9 4 3 4 1 6 9 2 4 3 1 8 6 8 0 2

To know how many ambulances were “out of order” on any given day, we count number of nines
in that row. We place the counts in the final column called “#9” (for “number of nines”):

Table 2.2: 25 simulations of 16 ambulances, with counts

Day A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 #9
1 5 4 4 5 9 8 2 9 1 5 8 2 1 8 2 6 2
2 6 5 0 5 2 7 4 4 6 3 9 5 2 5 8 1 1
3 2 5 4 9 0 5 8 4 5 9 1 2 8 7 5 3 2
4 8 9 2 6 9 0 7 2 5 2 2 2 2 4 7 6 2
5 0 4 5 1 3 7 6 3 2 9 5 8 0 6 0 4 1
6 7 4 8 9 1 5 1 2 3 6 4 8 5 1 7 5 1
7 0 9 8 7 7 3 9 1 7 7 9 9 6 8 4 7 4
8 7 2 0 2 4 6 9 2 3 9 5 3 7 1 3 0 2
9 8 0 0 3 3 0 0 3 8 6 4 6 0 4 6 7 1

10 9 7 1 9 8 1 8 7 0 4 4 7 0 5 6 1 2
11 0 9 0 7 0 1 6 0 8 6 0 3 1 9 8 3 2
12 1 2 7 8 8 6 1 0 8 3 4 5 8 8 4 9 1
13 1 0 8 6 9 2 0 7 7 0 0 7 9 2 3 0 2
14 0 0 5 5 4 0 1 7 8 2 0 8 3 2 2 4 0
15 6 3 9 6 8 8 7 6 6 4 3 8 7 0 4 3 1
16 4 2 6 9 0 0 8 5 3 1 5 1 8 7 6 8 1
17 3 6 3 5 3 1 2 4 3 1 6 2 9 5 2 4 1
18 0 6 1 9 0 7 9 4 2 0 1 5 8 5 8 1 2
19 3 2 2 7 8 2 2 1 2 9 2 5 9 9 6 0 3

38



20 6 3 3 2 6 8 3 9 0 5 7 8 8 3 8 6 1
21 8 3 0 0 1 5 3 7 0 9 6 4 1 2 5 0 1
22 1 8 7 1 7 1 2 6 4 3 0 0 7 5 6 2 0
23 9 2 8 0 3 1 9 1 5 6 5 9 8 4 3 0 3
24 6 7 4 9 4 2 0 6 1 0 4 1 0 5 5 9 2
25 9 4 3 4 1 6 9 2 4 3 1 8 6 8 0 2 2

Each value in the last column of Table 2.2 is the count of 9s in that row and, therefore, the
result from our simulation of one day.

We can estimate how often three or more ambulances would break down by looking for values
of three or greater in the last column (labeled “#9”). We find there are 3 rows with three or
more in the last column. Finally we divide this number of rows by the number of trials (25) to
get an estimate of the proportion of days with three or more breakdowns. The result is 0.12.

2.3 Solving the problem using Python

Here we rush ahead to show you how to do this simulation in Python.

We go through the Python code for the simulation, but we don’t expect you to understand
all of it right now. The rest of this book goes into more detail on reading and writing Python
code, and how you can use Python to build your own simulations. Here we just want to show
you what this code looks like, to give you an idea of where we are headed.

While you can run the code below on your own computer, for now we only need you to read
it and follow along; the text explains what each line of code does.

Coming back to the example

If you are interested, you can come back to this example later, and run it for yourself.
To do this, we recommend you read Chapter 4 that explains how to execute notebooks
online or on your own computer.

Note 1: Notebook: Ambulances

• Download notebook
• Interact
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Note 2: Comments in code

The first thing to say about the code you will see below is there are some lines that do
not do anything; these are the lines beginning with a # character (read # as “hash”).
Lines beginning with # are called comments. When Python sees a # at the start of a
line, it ignores everything else on that line, and skips to the next. Here’s an example of
a comment:

# Python will completely ignore this text.

Because Python ignores lines beginning with #, the text after the # is just for us, the
humans reading the code. The person writing the code will often use comments to explain
what the code is doing.

Our next task is to use Python to simulate a single day of ambulances. We will again represent
each ambulance by a random number from 0 through 9. 16 of these numbers represents
a simulation of all 16 ambulances available to the contractor. We call a simulation of all
ambulances for a specific day — one trial.

Before we begin our first trial, we need to load some helpful routines from the Numpy software
library. Numpy is a Python library that has many important functions for creating and working
with numerical data. We will use routines from Numpy in almost all our examples.

# Get the Numpy library, and call it "np" for short.
import numpy as np

We also need to ask Numpy for something (that we will call an “object”) that can generate
random numbers. Such an object is known as a “random number generator”.

# Ask Numpy for a random number generator.
# Name it `rnd` — short for "random"
rnd = np.random.default_rng()

Recall that we want 16 10-sided dice — one per ambulance. Our dice should be 10-sided,
because each ambulance has a 1-in-10 chance of being out of order.

The program to simulate one trial of the ambulances problem therefore begins with these
commands:

# Ask Numpy to generate 16 numbers from 0 through 9.

# These are the numbers we will ask Numpy to select from.
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# We store the numbers together in an *array*.
numbers = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

# Get 16 (size=16) values from the *numbers* array.
# Store the 16 numbers with the name "a"
a = rnd.choice(numbers, size=16)

# The result is a sequence (array) of 16 numbers.
a

array([5, 4, 4, 5, 9, 8, 2, 9, 1, 5, 8, 2, 1, 8, 2, 6])

The commands above ask the computer to store the results of the random drawing in a location
in the computer’s memory to which we give a name such as a or ambulances or aardvark —
the name is up to us.

Next, we need to count the number of defective ambulances:

# Count the number of nines in the random numbers.
# The "a == 9" part identifies all the numbers equal to 9.
# The "sum" part counts how many numbers "a == 9" found.
b = np.sum(a == 9)
# Show the result
b

np.int64(2)

You see that we have code like this:

np.sum(a == 9)

np.int64(2)

to count the number of values equal to 9 in the sequence a. For now just read np.sum(a
== 9) as “count the number of 9s in a”. We will explain how this code works fairly soon
(Section 5.13).

The sum command is a counting operation. It asks the computer to count the number of 9s
among the 16 numbers that are in location a following the random draw carried out by the
rnd.choice operation. The result of the sum operation will be somewhere between 0 and 16,
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the number of simulated ambulances that were out-of-order on a given simulated day. The
result is then placed in another location in the computer’s memory that we label b.

Above you see that we have worked out how to tell the computer to do a single trial — one
simulated day.

2.3.1 Repeating trials

We could run the code above for one trial over and over, and write down the result on a
piece of paper. If we did this 100 times we would have 100 counts of the number of simulated
ambulances that had broken down for each simulated day. To answer our question, we will
then count the number of times the count was three or more, and divide by 100, to get an
estimate of the proportion of days with three or more out-of-order ambulances.

One of the most useful things about the computer is that it is very good at repeating tasks
many times. Our next job is to ask the computer to repeat the single trial many times — say
1000 times — and count up the results for us.

Of course Python is very good at repeating things, but the instructions to tell Python to
repeat things will take a little while to get used to. Soon, we will spend some time going over
it in more detail. For now though, we show you how what it looks like, and ask you to take
our word for it.

The standard way to repeat steps in Python is a for loop. For example, let us say we wanted
to display (print) “Hello” five times. Here is how we would do that with a for loop:

# Read the next line as "repeat the following steps five times".
for i in np.arange(0, 5):

# The indented stuff is the code we repeat five times.
# Print "Hello" to the screen.
print("Hello")

Hello
Hello
Hello
Hello
Hello

You can probably see where we are going here. We are going to put the code for one trial
inside a for loop, to repeat that trial code many times.

Our next job is to store the results of each trial. If we are going to run 1000 trials, we need to
store 1000 results.

To do this, we start with a sequence of 1000 zeros, that we will fill in later, like this:
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# Ask Numpy to make a sequence of 1000 zeros that we will use
# to store the results of our 1000 trials.
# Call this sequence "z"
z = np.zeros(1000)

For now, z contains 1000 zeros, but we will soon use a for loop to execute 1000 trials. For
each trial we will calculate our result (the number of broken-down ambulances), and we will
store the result in the z store. We end up with 1000 trial results stored in z.

With these parts, we are now ready to solve the ambulance problem, using Python.

2.3.2 The solution

This is our big moment! We will combine the elements shown above to perform our ambulance
simulation over, say, 1000 days. Just a quick reminder: we do not expect you to understand
all the detail of the code below; we will cover that later. For now, see if you can follow along
with the gist of it.

To solve resampling problems, we typically proceed as we have done above. We figure out the
structure of a single trial and then place that trial in a for loop that executes it multiple times
(once for each day, in our case).

Now, let us apply this procedure to our ambulance problem. We simulate 1000 days. You will
see that we have just taken the parts above, and put them together. The only new part here,
is the step at the end, where we store the result of the trial. Bear with us for that; we will
come to it soon.

# Ask Numpy to make a sequence of 1000 zeros that we will use
# to store the results of our 1000 trials.
# Call this sequence "z"
z = np.zeros(1000)

# These are the numbers we will ask Numpy to select from.
numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

# Read the next line as "repeat the following steps 1000 times".
for i in np.arange(0, 1000):

# The indented stuff is the code we repeat 1000 times.

# Get 16 (size=16) values from the *numbers* list.
# Store the 16 numbers with the name "a"
a = rnd.choice(numbers, size=16)
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# Count the number of nines in the random numbers.
# The "a == 9" part identifies all the numbers equal to 9.
# The "sum" part counts how many numbers "a == 9" found.
b = np.sum(a == 9)

# Store the result from this trial in the sequence "z"
z[i] = b

# Now go back and repeat the trial, until done.

The z[i] = b statement that follows the sum counting operation simply keeps track of the
results of each trial, placing the number of defective ambulances for each trial inside the
sequence called z. The sequence has 1000 positions: one for each trial.

When we have run the code above, we have stored 1000 trial results in the sequence z. These
are 1000 counts of out-of-order ambulances, one for each of our simulated days. Our last task
is to calculate the proportion of these days for which we had more than three broken-down
ambulances.

Since our aim is to count the number of days in which three or more defective ambulances
occur, we use another counting sum command at the end of the 1000 trials. This command
counts how many times three or more defects occurred in the 1000 days recorded in our z
sequence, and we place the result in another location, k. The value of k gives us the total
number of days where 3 or more defective ambulances are seen to occur. Then we divide
the number in k by 1000, the number of trials. Thus we obtain an estimate of the chance,
expressed as a probability between 0 and 1, that 3 or more ambulances will be defective on a
given day. And we store that result in a location that we call kk, which Python subsequently
prints to the screen.

# How many trials resulted in 3 or more ambulances being out of order?
# (The test counts the number of days where the out-of-order count was greater
# than or equal to 3, written as ">= 3").
k = np.sum(z >= 3)

# Convert to a proportion.
kk = k / 1000

# Print the result.
print(kk)

0.215
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This is the estimate we wanted; the proportion of days where three or more ambulances were
out of action.

We have crept up on the solution, so it might not be clear to you how few steps you needed
to do this task. Here is the whole solution to the problem, without the comments:

import numpy as np
rnd = np.random.default_rng()

z = np.zeros(1000)
numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for i in np.arange(0, 1000):
a = rnd.choice(numbers, size=16)
b = np.sum(a == 9)
z[i] = b

k = np.sum(z >= 3)
kk = k / 1000
print(kk)

0.215

End of notebook: Ambulances

ambulances starts at Note 1.

Notice that the code above is exactly the same as the code we built up in steps. But notice too,
that the answer we got from this code was slightly different from the answer we got first.

Why did we get a different answer from the same code? See if you can come up with a good
answer before reading the explanation below.

Randomness in estimates

This is an essential point — our code uses random numbers to get an estimate of the
quantity we want — in this case, the probability of three or more ambulances being out
of order. Every run of our code block above will use a different set of random numbers.
Therefore, every run of the code will give us a very slightly different number. As you will
soon see, we can make our estimate more and more accurate, and less and less different
between each run, by doing many trials in each run. Here we did 1000 trials, but we will
usually do 10000 trials, to give us a good estimate, that does not vary much from run to
run.

45



Don’t worry about the detail of how each of these commands works — we will cover those
details gradually, over the next few chapters. But, we hope that you can see, in principle, how
each of the operations that the computer carries out are analogous to the operations that you
yourself executed when you solved this problem using the ten-sided dice. This is exactly the
procedure that we will use to solve every problem in probability and statistics that we must
deal with.

While writing programs like these take a bit of getting used to, it is vastly simpler than the
older, more conventional approaches to such problems routinely taught to students.

2.4 How resampling differs from the conventional approach

In the standard approach the student learns to choose and solve a formula. Doing the algebra
and arithmetic is quick and easy. The difficulty is in choosing the correct formula. Unless you
are a professional statistician, it may take you quite a while to arrive at the correct formula
— considerable hard thinking, and perhaps some digging in textbooks. More important than
the labor, however, is that you may come up with the wrong formula, and hence obtain the
wrong answer. And how would you know if you were wrong?

Most students who have had a standard course in probability and statistics are quick to tell
you that it is not easy to find the correct formula, even immediately after finishing a course
(or several courses) on the subject. After leaving school or university, it is harder still to
choose the right formula. Even many people who have taught statistics at the university level
(including this writer) must look at a book to get the correct formula for a problem as simple
as the ambulances, and then we are often still not sure we have the right answer. This is the
grave disadvantage of the standard approach.

In the past few decades, resampling and other Monte Carlo simulation methods have come
to be used extensively in scientific research. But in contrast to the material in this book,
simulation has mostly been used in situations so complex that mathematical methods have
not yet been developed to handle them. Here are examples of such situations:

1. Imagine a large train station such as Grand Central Terminal in New York or King’s Cross
in London. We are responsible for planning the new station layout so that passengers
can move as quickly as possible to and from their trains in rush-hour. It will likely be
far too complicated to make formulas to represent the passenger flows, but we could use
the computer to simulate passengers, and their movements, and try different potential
layouts within the simulation.

2. The Navy might want to know how long the average ship will have to wait for dock
facilities. The time of completion varies from ship to ship, and the number of ships
waiting in line for dock work varies over time. This problem can be handled quite easily
with the experimental simulation method, but formal mathematical analysis would be
difficult or impossible.
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3. What are the best tactics in baseball? Should one bunt? Should one put the best hitter
up first, or later? By trying out various tactics with dice or random numbers, Earnshaw
Cook (in his book Percentage Baseball), found that it is best never to bunt, and the
highest-average hitter should be put up first, in contrast to usual practice. Finding this
answer would have been much more difficult with the analytic method.

4. Which search pattern will yield the best results for a ship searching for a school of fish?
Trying out “models” of various search patterns with simulation can provide a fast answer.

5. What strategy in the game of Monopoly will be most likely to win? The simulation
method systematically plays many games (with a computer) testing various strategies
to find the best one.

But those five examples are all complex problems. This book and its earlier editions break new
ground by using this method for simple rather than complex problems, especially in statistics
rather than pure probability, and in teaching beginning rather than advanced students to solve
problems this way. (Here it is necessary to emphasize that the resampling method is used to
solve the problems themselves rather than as a demonstration device to teach the notions found
in the standard conventional approach. Simulation has been used in elementary courses in the
past, but only to demonstrate the operation of the analytical mathematical ideas. That is
very different than using the resampling approach to solve statistics problems themselves, as
is done here.)

Once we get rid of the formulas and tables, we can see that statistics is a matter of clear
thinking, not fancy mathematics. Then we can get down to the business of learning how to
do that clear statistical thinking, and putting it to work for you. The study of probability
is purely mathematics (though not necessarily formulas) and technique. But statistics has
to do with meaning. For example, what is the meaning of data showing an association just
discovered between a type of behavior and a disease? Of differences in the pay of men and
women in your firm? Issues of causation, acceptability of control, and design of experiments
cannot be reduced to technique. This is “philosophy” in the fullest sense. Probability and
statistics calculations are just one input. Resampling simulation enables us to get past issues of
mathematical technique and focus on the crucial statistical elements of statistical problems.

We hope you will find, as you read through the chapters, that the resampling way of thinking
is a good way to think about the more traditional statistical methods that some of you may
already know. Our approach will be to use resampling to understand the ideas, and then
apply this understanding to reason about traditional methods. You may also find that the
resampling methods are not only easier to understand — they are often more useful, because
they are so general in their application.
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3 What is probability?

Uncertainty, in the presence of vivid hopes and fears, is painful, but must be en-
dured if we wish to live without the support of comforting fairy tales.” — Bertrand
Russell (1945 p. xiv).

3.1 Introduction

The central concept for dealing with uncertainty is probability. Hence we must inquire into
the “meaning” of the term probability. (The term “meaning” is in quotes because it can be a
confusing word.)

You have been using the notion of probability all your life when drawing conclusions about
what you expect to happen, and in reaching decisions in your public and personal lives.

You wonder: Will the kick from the 45 yard line go through the uprights? How much oil can
you expect from the next well you drill, and what value should you assign to that prospect?
Will you make money if you invest in tech stocks for the medium term, or should you spread
your investments across the stock market? Will the next Space-X launch end in disaster? Your
answers to these questions rest on the probabilities you estimate.

And you act on the basis of probabilities: You pay extra for an low-interest loan, if you think
that interest rates are going to go up. You bet heavily on a poker hand if there is a high
probability that you have the best hand. A hospital decides not to buy another ambulance
when the administrator judges that there is a low probability that all the other ambulances
will ever be in use at once. NASA decides whether or not to send off the space shuttle this
morning as scheduled.

The idea of probability is essential when we reason about uncertainty, and so this chapter
discusses what is meant by such key terms as “probability,” “chance”, “sample,” and “universe.”
It discusses the nature and the usefulness of the concept of probability as used in this book,
and it touches on the source of basic estimates of probability that are the raw material of
statistical inferences.
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3.2 The “Meaning” of “Probability”

Probability is difficult to define (Feller 1968), but here is a useful informal starting point:

A probability is a number from 0 through 1 that reflects how likely it is that a
particular event will happen.

Any particular stated probability is an assertion that indicates how likely you believe it is that
an event will occur.

If you give an event a probability of 0 you mean that you are certain it will not happen. If you
give probability 1 to an event, you mean you are certain that it will happen. For example, if I
give you one card from deck that you know contains only the standard 52 cards — before you
look at the card, you can give probability 0 to the card being a joker, because you are certain
the pack does not contain any joker cards. If I then select only the 14 spades from that deck,
and give you a card from that selection, you will say there is probability 1 that the card is a
black card, because all the spades are black cards.

A probability estimate of .2 indicates that you think there is twice as great a chance of the event
happening as if you had estimated a probability of .1. This is the rock-bottom interpretation
of the term “probability,” and the heart of the concept.

Expressing probability

A given probability may be expressed in terms of probability, odds, or chances, and I
shall use all three terms to help familiarize you with them.
Let us say we think there is a probability of 0.1 that it will rain tomorrow.
We can restate this probability by saying there is a one in 10 chance that it will rain
tomorrow (1/10 = 0.1). Giving the chances as 1 in 10, or 2 in 20, or 10 in 100, is the
same as saying the probability is 0.1.
If we multiply the probability by 100 we get the percent chance — another way of saying
the probability. Here we have a 0.1 ∗ 100 = 10% chance of rain. We could also say that
the chances of rain are 10 in 100.
Odds are still another way of expressing probability. Here we think of our outcome of
interest — a day with rain and compare it to our outcome that is not of interest — a day
without rain. Our probability of 0.1 means that we expect one day with rain in every 10
days, and therefore, one day with rain for every nine days without rain. We can express
the 0.1 probability of rain as odds 1 to 9 (of a rainy day), or 9 to 1 against a rainy day.
“Likelihood” is a term related to “probability” but is not a complete synonym for it — it
has a specific and technical meaning in probability and statistics.

The idea of probability arises when you are not sure about what will happen in an uncertain
situation. For example, you may lack information and therefore can only make an estimate. If
someone asks you your name, you do not use the concept of probability to answer; you know
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the answer to a very high degree of surety. To be sure, there is some chance that you do not
know your own name, but for all practical purposes you can be quite sure of the answer. If
someone asks you who will win tomorrow’s baseball game, however, there is a considerable
chance that you will be wrong no matter what you say. Whenever there is a reasonable chance
that your prediction will be wrong, the concept of probability can help you.

The concept of probability helps you to answer the question, “How likely is it that…?” The
purpose of the study of probability and statistics is to help you make sound appraisals of
statements about the future, and good decisions based upon those appraisals. The concept of
probability is especially useful when you have a sample from a larger set of data — a “universe”
— and you want to know the probability of various degrees of likeness between the sample and
the universe. (The universe of events you are sampling from is also called the “population,” a
concept to be discussed below.) Perhaps the universe of your study is all high school graduates
in 2018. You might then want to know, for example, the probability that the universe’s average
SAT (university entrance) score will not differ from your sample’s average SAT by more than
some arbitrary number of SAT points — say, ten points.

We have said that a probability statement is about the future. Well, usually. Occasionally you
might state a probability about your future knowledge of past events — that is, “I think I’ll
find out that…” — or even about the unknown past. (Historians use probabilities to measure
their uncertainty about whether events occurred in the past, and the courts do, too, though
the courts hesitate to say so explicitly.)

Sometimes one knows a probability, such as in the case of a gambler playing black on an honest
roulette wheel, or an insurance company issuing a policy on an event with which it has had a
lot of experience, such as a life insurance policy. But often one does not know the probability of
a future event. Therefore, our concept of probability must include situations where extensive
data are not available.

All of the many techniques used to estimate probabilities should be thought of as proxies for
the actual probability. For example, if Mission Control at Space Central simulates what should
and probably will happen in space if a valve is turned aboard a space craft just now being
built, the test result on the ground is a proxy for the real probability of what will happen
when the crew turn the valve in the planned mission.

In some cases, it is difficult to conceive of any data that can serve as a proxy. For example,
the director of the CIA, Robert Gates, said in 1993 “that in May 1989, the CIA reported that
the problems in the Soviet Union were so serious and the situation so volatile that Gorbachev
had only a 50-50 chance of surviving the next three to four years unless he retreated from his
reform policies” (The Washington Post, January 17, 1993, p. A42). Can such a statement be
based on solid enough data to be more than a crude guess?

The conceptual probability in any specific situation is an interpretation of all the evidence that
is then available. For example, a wise biomedical worker’s estimate of the chance that a given
therapy will have a positive effect on a sick patient should be an interpretation of the results
of not just one study in isolation, but of the results of that study plus everything else that is
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known about the disease and the therapy. A wise policymaker in business, government, or the
military will base a probability estimate on a wide variety of information and knowledge. The
same is even true of an insurance underwriter who bases a life-insurance or shipping-insurance
rate not only on extensive tables of long-time experience but also on recent knowledge of other
kinds. Each situation asks us to make a choice of the best method of estimating a probability
— whether that estimate is objective — from a frequency series — or subjective, from the
distillation of other experience.

3.3 The nature and meaning of the concept of probability

It is confusing and unnecessary to inquire what probability “really” is. (Indeed, the terms
“really” and “is,” alone or in combination, are major sources of confusion in statistics and in
other logical and scientific discussions, and it is often wise to avoid their use.) Various concepts
of probability — which correspond to various common definitions of the term — are useful in
particular contexts. This book contains many examples of the use of probability. Work with
them will gradually develop a sound understanding of the concept.

There are two major concepts and points of view about probability — frequency and degrees of
belief. Each is useful in some situations but not in others. Though they may seem incompatible
in principle, there almost never is confusion about which is appropriate in a given situation.

1. Frequency: The probability of an event can be said to be the proportion of times that
the event has taken place in the past, usually based on a long series of trials. Insurance
companies use this when they estimate the probability that a thirty-five-year-old teacher
will die during a period for which he wants to buy an insurance policy. (Notice this
shortcoming: Sometimes you must bet upon events that have never or only infrequently
taken place before, and so you cannot reasonably reckon the proportion of times they
occurred one way or the other in the past.)

2. Degree of belief : The probability that an event will take place or that a statement is true
can be said to correspond to the odds at which you would bet that the event will take
place. (Notice a shortcoming of this concept: You might be willing to accept a five-dollar
bet at 2-1 odds that your team will win the game, but you might be unwilling to bet a
hundred dollars at the same odds.)

See (Barnett 1982, chap. 3) for an in-depth discussion of different approaches to probability.

The connection between gambling and immorality or vice troubles some people about gambling
examples. On the other hand, the immediacy and consequences of the decisions that the
gambler has to make give the subject a special tang. There are several reasons why statistics
use so many gambling examples — and especially tossing coins, throwing dice, and playing
cards:
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1. Historical: The theory of probability began with gambling examples of dice analyzed by
Cardano, Galileo, and then by Pascal and Fermat.

2. Generality: These examples are not related to any particular walk of life, and therefore
they can be generalized to applications in any walk of life. Students in any field —
business, medicine, science — can feel equally at home with gambling examples.

3. Sharpness: These examples are particularly stark, and unencumbered by the baggage of
particular walks of life or special uses.

4. Universality: Many other texts use these same examples, and therefore the use of them
connects up this book with the main body of writing about probability and statistics.

Often we’ll begin with a gambling example and then consider an example in one of the profes-
sional fields — such as business and other decision-making activities, biostatistics and medicine,
social science and natural science — and everyday living. People in one field often can benefit
from examples in others; for example, medical students should understand the need for busi-
ness decision-making in terms of medical practice, as well as the biostatistical examples. And
social scientists should understand the decision-making aspects of statistics if they have any
interest in the use of their work in public policy.

3.4 Back to Proxies

Example of a proxy: The “probability risk assessments” (PRAs) that are made for the chances
of failures of nuclear power plants are based, not on long experience or even on laboratory ex-
periment, but rather on theorizing of various kinds — using pieces of prior experience wherever
possible, of course. A PRA can cost a nuclear facility many millions of dollars.

Another example: If a manager of a high-street store looks at the sales of a particular brand
of smart watches in the last two Decembers, and on that basis guesses how likely it is that
she will run out of stock if she orders 200 smart watches, then the last two years’ experience
is serving as a proxy for future experience. If a sales manager just “intuits” that the odds are
3 to 1 (a probability of .75) that the main local competitor will not meet a price cut, then
all her past experience summed into her intuition is a proxy for the probability that it will
really happen. Whether any proxy is a good or bad one depends on the wisdom of the person
choosing the proxy and making the probability estimates.

How does one estimate a probability in practice? This involves practical skills not very different
from the practical skills required to estimate with accuracy the length of a golf shot, the number
of carpenters you will need to build a house, or the time it will take you to walk to a friend’s
house; we will consider elsewhere some ways to improve your practical skills in estimating
probabilities. For now, let us simply categorize and consider in the next section various ways
of estimating an ordinary garden variety of probability, which is called an “unconditional”
probability.
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3.5 The various ways of estimating probabilities

Consider the probability of drawing an even-numbered spade from a deck of poker cards
(consider the queen as even and the jack and king as odd). Here are several general methods
of estimation, where we define each method in terms of the operations we use to make the
estimate:

1. Experience.

The first possible source for an estimate of the probability of drawing an even-numbered
spade is the purely empirical method of experience. If you have watched card games
casually from time to time, you might simply guess at the proportion of times you have
seen even-numbered spades appear — say, “about 1 in 15” or “about 1 in 9” (which is
almost correct) or something like that. (If you watch long enough you might come to
estimate something like 6 in 52.)

General information and experience are also the source for estimating the probability
that the sales of a particular brand of smart watch this December will be between 200
and 250, based on sales the last two Decembers; that your team will win the football
game tomorrow; that war will break out next year; or that a United States astronaut
will reach Mars before a Chinese astronaut. You simply put together all your relevant
prior experience and knowledge, and then make an educated guess.

Observation of repeated events can help you estimate the probability that a machine will
turn out a defective part or that a child can memorize four nonsense syllables correctly
in one attempt. You watch repeated trials of similar events and record the results.

Data on the mortality rates for people of various ages in a particular country in a given
decade are the basis for estimating the probabilities of death, which are then used by
the actuaries of an insurance company to set life insurance rates. This is systematized
experience — called a frequency series.

No frequency series can speak for itself in a perfectly objective manner. Many judgments
inevitably enter into compiling every frequency series — deciding which frequency series
to use for an estimate, choosing which part of the frequency series to use, and so on. For
example, should the insurance company use only its records from last year, which will
be too few to provide as much data as is preferable, or should it also use death records
from years further back, when conditions were slightly different, together with data from
other sources? (Of course, no two deaths — indeed, no events of any kind — are exactly
the same. But under many circumstances they are practically the same, and science is
only interested in such “practical” considerations.)

Given that we have to use judgment in probability estimates, the reader may prefer to
talk about “degrees of belief” instead of probabilities. That’s fine, just as long as it is
understood that we operate with degrees of belief in exactly the same way as we operate
with probabilities; the two terms are working synonyms.
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There is no logical difference between the sort of probability that the life insurance
company estimates on the basis of its “frequency series” of past death rates, and the
manager’s estimates of the sales of smart watches in December, based on sales in that
month in the past two years.1

The concept of a probability based on a frequency series can be rendered almost useless
when all the observations are repetitions of a single magnitude — for example, the case
of all successes and zero failures of space-shuttle launches prior to the Challenger shuttle
tragedy in the 1980s; in those data alone there was almost no basis to estimate the
probability of a shuttle failure. (Probabilists have made some rather peculiar attempts
over the centuries to estimate probabilities from the length of a zero-defect time series —
such as the fact that the sun has never failed to rise (foggy days aside!) — based on the
undeniable fact that the longer such a series is, the smaller the probability of a failure;
see e.g., (Whitworth 1897, xix–xli). However, one surely has more information on which
to act when one has a long series of observations of the same magnitude rather than a
short series).

2. Simulated experience.

A second possible source of probability estimates is empirical scientific investigation
with repeated trials of the phenomenon. This is an empirical method even when the
empirical trials are simulations. In the case of the even-numbered spades, the empirical
scientific procedure is to shuffle the cards, deal one card, record whether or not the card
is an even-number spade, replace the card, and repeat the steps a good many times.
The proportions of times you observe an even-numbered spade come up is a probability
estimate based on a frequency series.

You might reasonably ask why we do not just count the number of even-numbered spades
in the deck of fifty-two cards — using the sample space analysis you see below. No reason
at all. But that procedure would not work if you wanted to estimate the probability of
a baseball batter getting a hit or a lighter producing flame.

Some varieties of poker are so complex that experiment is the only feasible way to
estimate the probabilities a player needs to know.

1At one time, some writers believed there was a difference between “objectively sharply defined” and “objec-
tively vague” probabilities. Raiffa (1968) gives a clear example of why this is not so:

Suppose you are confronted with two options. In option 1, you must toss coin 1 (which is fair and true),
guess heads or tails, and win $1.00 if you match and lose $1.00 if you fail to match. In option 2, you have a
50-50 chance of getting coin 2, which has two heads, or of getting coin 3, which has two tails. Not knowing
whether you are tossing coin 2 or 3, you must call, toss, and get the payoffs as in option 1. With option 1,
the probability of the toss coming out heads is .5; with option 2, the same probability is either 0 or 1, and
since the chance of each in turn is .5, the probability of heads is ultimately .5 once again. Nothing is to be
gained by saying that one .5 is sharply defined and that the other is fuzzy. Of course, if, and this is a big
“if,” you could experiment with the coin you will toss before you are obliged to declare, then the two options
are manifestly asymmetrical. Barring this privilege, the two options are equivalent (Raiffa 1968, 108).
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The resampling approach to statistics produces estimates of most probabilities with this
sort of experimental “Monte Carlo” method. More about this later.

3. Sample space analysis and first principles.

A third source of probability estimates is counting the possibilities — the quintessential
theoretical method. For example, by examination of an ordinary die one can determine
that there are six different numbers that can come up. One can then determine that
the probability of getting (say) either a “1” or a “2,” on a single throw, is 2/6 = 1/3,
because two among the six possibilities are “1” or “2.” One can similarly determine that
there are two possibilities of getting a “1” plus a “6” out of thirty-six possibilities when
rolling two dice, yielding a probability estimate of 2/36 = 1/18.

Estimating probabilities by counting the possibilities has two requirements: 1) that the
possibilities all be known (and therefore limited), and few enough to be studied easily;
and 2) that the probability of each particular possibility be known, for example, that
the probabilities of all sides of the dice coming up are equal, that is, equal to 1/6.

4. Mathematical shortcuts to sample-space analysis.

A fourth source of probability estimates is mathematical calculations. (We will introduce
some probability calculation rules in Chapter 9.) If one knows by other means that the
probability of a spade is 1/4 and the probability of an even-numbered card is 6/13, one
can use probability calculation rules to calculate that the probability of turning up an
even-numbered spade is 6/52 (that is, 1/4 x 6/13). (This is multiplication rule introduced
in Section 8.12). If one knows that the probability of a spade is 1/4 and the probability
of a heart is 1/4, one can then calculate that the probability of getting a heart or a
spade is 1/2 (that is 1/4 + 1/4). (We are using the addition rule from Section 8.7.) The
point here is not the particular calculation procedures, which we will touch on later, but
rather that one can often calculate the desired probability on the basis of already-known
probabilities.

It is possible to estimate probabilities with mathematical calculation only if one knows by
other means the probabilities of some related events. For example, there is no possible
way of mathematically calculating that a child will memorize four nonsense syllables
correctly in one attempt; empirical knowledge is necessary.

5. Kitchen-sink methods.

In addition to the above four categories of estimation procedures, the statistical imagina-
tion may produce estimates in still other ways such as a) the salesman’s seat-of-the-pants
estimate of what the competition’s price will be next quarter, based on who-knows-what
gossip, long-time acquaintance with the competitors, and so on, and b) the probability
risk assessments (PRAs) that are made for the chances of failures of nuclear power plants
based, not on long experience or even on laboratory experiment, but rather on theorizing
of various kinds — using pieces of prior experience wherever possible, of course. Any of
these methods may be a combination of theoretical and empirical methods.
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As an example of an organization struggling with kitchen-sink methods, consider the estimation
of the probability of failure for the tragic flight of the Challenger shuttle, as described by the
famous physicist Nobelist Richard Feynman. This is a very real case that includes just about
every sort of complication that enters into estimating probabilities.

…Mr. Ullian told us that 5 out of 127 rockets that he had looked at had failed —
a rate of about 4 percent. He took that 4 percent and divided it by 4, because he
assumed a manned flight would be safer than an unmanned one. He came out with
about a 1 percent chance of failure, and that was enough to warrant the destruct
charges.

But NASA [the space agency in charge] told Mr. Ullian that the probability of
failure was more like 1 in 105.

I tried to make sense out of that number. “Did you say 1 in 105?”

“That’s right; 1 in 100,000.”

“That means you could fly the shuttle every day for an average of 300 years between
accidents — every day, one flight, for 300 years — which is obviously crazy!”

“Yes, I know,” said Mr. Ullian. “I moved my number up to 1 in 1000 to answer all
of NASA’s claims — that they were much more careful with manned flights, that
the typical rocket isn’t a valid comparison, etcetera.”

But then a new problem came up: the Jupiter probe, Galileo, was going to use a
power supply that runs on heat generated by radioactivity. If the shuttle carrying
Galileo failed, radioactivity could be spread over a large area. So the argument
continued: NASA kept saying 1 in 100,000 and Mr. Ullian kept saying 1 in 1000,
at best.

Mr. Ullian also told us about the problems he had in trying to talk to the man in
charge, Mr. Kingsbury: he could get appointments with underlings, but he never
could get through to Kingsbury and find out how NASA got its figure of 1 in
100,000 (Feynman and Leighton 1988, 179–80).

Feynman tried to ascertain more about the origins of the figure of 1 in 100,000 that entered
into NASA’s calculations. He performed an experiment with the engineers:

…“Here’s a piece of paper each. Please write on your paper the answer to this
question: what do you think is the probability that a flight would be uncompleted
due to a failure in this engine?”

They write down their answers and hand in their papers. One guy wrote “99-
44/100% pure” (copying the Ivory soap slogan), meaning about 1 in 200. Another
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guy wrote something very technical and highly quantitative in the standard sta-
tistical way, carefully defining everything, that I had to translate — which also
meant about 1 in 200. The third guy wrote, simply, “1 in 300.”

Mr. Lovingood’s paper, however, said:

“Cannot quantify. Reliability is judged from:

• past experience
• quality control in manufacturing
• engineering judgment”

“Well,” I said, “I’ve got four answers, and one of them weaseled.” I turned to
Mr. Lovingood: “I think you weaseled.”

“I don’t think I weaseled.”

“You didn’t tell me what your confidence was, sir; you told me how you determined
it. What I want to know is: after you determined it, what was it?”

He says, “100 percent” — the engineers’ jaws drop, my jaw drops; I look at him,
everybody looks at him — “uh, uh, minus epsilon!”

So I say, “Well, yes; that’s fine. Now, the only problem is, WHAT IS EPSILON?”

He says, “10−5.” It was the same number that Mr. Ullian had told us about: 1 in
100,000.

I showed Mr. Lovingood the other answers and said, “You’ll be interested to know
that there is a difference between engineers and management here — a factor of
more than 300.”

He says, “Sir, I’ll be glad to send you the document that contains this estimate, so
you can understand it.”

Later, Mr. Lovingood sent me that report. It said things like “The probability
of mission success is necessarily very close to 1.0” — does that mean it is close
to 1.0, or it ought to be close to 1.0? — and “Historically, this high degree of
mission success has given rise to a difference in philosophy between unmanned
and manned space flight programs; i.e., numerical probability versus engineering
judgment.” As far as I can tell, “engineering judgment” means they’re just going
to make up numbers! The probability of an engine-blade failure was given as a
universal constant, as if all the blades were exactly the same, under the same
conditions. The whole paper was quantifying everything. Just about every nut
and bolt was in there: “The chance that a HPHTP pipe will burst is 10−7.” You
can’t estimate things like that; a probability of 1 in 10,000,000 is almost impossible
to estimate. It was clear that the numbers for each part of the engine were chosen
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so that when you add everything together you get 1 in 100,000. (Feynman and
Leighton 1988, 182–83).

We see in the Challenger shuttle case very mixed kinds of inputs to actual estimates of prob-
abilities. They include frequency series of past flights of other rockets, judgments about the
relevance of experience with that different sort of rocket, adjustments for special temperature
conditions (cold), and much much more. There also were complex computational processes
in arriving at the probabilities that were made the basis for the launch decision. And most
impressive of all, of course, are the extraordinary differences in estimates made by various
persons (or perhaps we should talk of various statuses and roles) which make a mockery of the
notion of objective estimation in this case.

Working with different sorts of estimation methods in different sorts of situations is not new;
practical statisticians do so all the time. We argue that we should make no apology for doing
so.

The concept of probability varies from one field of endeavor to another; it is different in the law,
in science, and in business. The concept is most straightforward in decision-making situations
such as business and gambling; there it is crystal-clear that one’s interest is entirely in making
accurate predictions so as to advance the interests of oneself and one’s group. The concept is
most difficult in social science, where there is considerable doubt about the aims and values
of an investigation. In sum, one should not think of what a probability “is” but rather how
best to estimate it. In practice, neither in actual decision-making situations nor in scientific
work — nor in classes — do people experience difficulties estimating probabilities because
of philosophical confusions. Only philosophers and mathematicians worry — and even they
really do not need to worry — about the “meaning” of probability2.

3.6 The relationship of probability to other magnitudes

An important argument in favor of approaching the concept of probability as an estimate is
that an estimate of a probability often (though not always) is the opposite side of the coin
from an estimate of a physical quantity such as time or space.

For example, uncertainty about the probability that one will finish a task within 9 minutes is
another way of labeling the uncertainty that the time required to finish the task will be less
than 9 minutes. Hence, if estimation is appropriate for time in this case, it should be equally
appropriate for probability. The same is true for the probability that the quantity of smart
watches sold will be between 200 and 250 units.

2This does not mean that I think that people should confine their learning to what they need in their daily
work. Having a deeper philosophical knowledge than you ordinarily need can help you deal with extraordinary
problems when they arise.
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Hence the concept of probability, and its estimation in any particular case, should be no more
puzzling than is the “dual” concept of time or distance or quantities of smart watches. That
is, lack of certainty about the probability that an event will occur is not different in nature
from lack of certainty about the amount of time or distance in the event. There is no essential
difference between whether a part 2 inches in length will be the next to emerge from the
machine, or what the length of the next part will be, or the length of the part that just
emerged (if it has not yet been measured).

The information available for the measurement of (say) the length of a car or the location
of a star is exactly the same information that is available with respect to the concept of
probability in those situations. That is, one may have ten disparate observations of a car’s
length which then constitute a probability distribution, and the same for the altitude of a star
in the heavens.

In a book of puzzles about probability (Mosteller 1987, problem 42), this problem appears:
“If a stick is broken in two at random, what is the average length of the smaller piece?” This
particular puzzle does not even mention probability explicitly, and no one would feel the need
to write a scholarly treatise on the meaning of the word “length” here, any more than one
would one do so if the question were about an astronomer’s average observation of the angle
of a star at a given time or place, or the average height of boards cut by a carpenter, or the
average size of a basketball team. Nor would one write a treatise about the “meaning” of
“time” if a similar puzzle involved the average time between two bird calls. Yet a rephrasing of
the problem reveals its tie to the concept of probability, to wit: What is the probability that
the smaller piece will be (say) more than half the length of the larger piece? Or, what is the
probability distribution of the sizes of the shorter piece?

The duality of the concepts of probability and physical entities also emerges in Whitworth’s
discussion (1897) of fair betting odds:

…What sum ought you fairly give or take now, while the event is undetermined, in
exchange for the assurance that you shall receive a stated sum (say $1,000) if the
favourable event occur? The chance of receiving $1,000 is worth something. It is
not as good as the certainty of receiving $1,000, and therefore it is worth less than
$1,000. But the prospect or expectation or chance, however slight, is a commodity
which may be bought and sold. It must have its price somewhere between zero and
$1,000. (p. xix.)

…And the ratio of the expectation to the full sum to be received is what is called
the chance of the favourable event. For instance, if we say that the chance is 1/5, it
is equivalent to saying that $200 is the fair price of the contingent $1,000. (p. xx.)…

The fair price can sometimes be calculated mathematically from a priori consid-
erations: sometimes it can be deduced from statistics, that is, from the recorded
results of observation and experiment. Sometimes it can only be estimated gen-
erally, the estimate being founded on a limited knowledge or experience. If your
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expectation depends on the drawing of a ticket in a raffle, the fair price can be
calculated from abstract considerations: if it depend upon your outliving another
person, the fair price can be inferred from recorded statistics: if it depend upon
a benefactor not revoking his will, the fair price depends upon the character of
your benefactor, his habit of changing his mind, and other circumstances upon
the knowledge of which you base your estimate. But if in any of these cases you
determine that $300 is the sum which you ought fairly to accept for your prospect,
this is equivalent to saying that your chance, whether calculated or estimated, is
3/10... (p. xx.)

It is indubitable that along with frequency data, a wide variety of other information will affect
the odds at which a reasonable person will bet. If the two concepts of probability stand
on a similar footing here, why should they not be on a similar footing in all discussion of
probability? I can think of no reason that they should not be so treated.

Scholars write about the “discovery” of the concept of probability in one century or another.
But is it not likely that even in pre-history, when a fisherperson was asked how long the big fish
was, s/he sometimes extended her/his arms and said, “About this long, but I’m not exactly
sure,” and when a scout was asked how many of the enemy there were, s/he answered, “I
don’t know for sure...probably about fifty.” The uncertainty implicit in these statements is the
functional equivalent of probability statements. There simply is no need to make such heavy
work of the probability concept as the philosophers and mathematicians and historians have
done.

3.7 What is “chance”?

The study of probability focuses on events with randomness — that is, events about which there
is uncertainty whether or not they will occur. And the uncertainty refers to your knowledge
rather than to the event itself. For example, consider this physical illustration with a remote
control. The remote control has a front end that should point at the TV that it controls, and
a back end that will usually be pointing at me, the user of the remote control. Call the front
— the TV end, and the back — the sofa end of the remote control.

I spin the remote control like a baton twirler. If I hold it at the sofa end and attempt to flip
it so that it turns only half a revolution, I can be almost sure that I will correctly get the TV
end and not the sofa end. And if I attempt to flip it a full revolution, again I can almost surely
get the sofa end successfully. It is not a random event whether I catch the sofa end or the TV
end (here ignoring those throws when I catch neither end) when doing only half a revolution
or one revolution. The result is quite predictable in both these simple maneuvers so far.

When I say the result is “predictable,” I mean that you would not bet with me about whether
this time I’ll get the TV or the sofa end. So we say that the outcome of my flip aiming at half
a revolution is not “random.”
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When I twirl the remote control so little, I control (almost completely) whether the sofa end
or the TV end comes down to my hand; this is the same as saying that the outcome does not
occur by chance.

The terms “random” and “chance” implicitly mean that you believe that I cannot control or
cannot know in advance what will happen.

Whether this twirl will be the rare time I miss, however, should be considered chance. Though
you would not bet at even odds on my catching the sofa end versus the TV end if there is to
be only a half or one full revolution, you might bet — at (say) odds of 50 to 1 — that I will
make a mistake and get it wrong, or drop it. So the very same flip can be seen as random or
determined depending on what aspect of it we are looking at.

Of course you would not bet against me about my not making a mistake, because the bet
might cause me to make a mistake purposely. This “moral hazard” is a problem that emerges
when a person buys life insurance and may commit suicide, or when a boxer may lose a fight
purposely. The people who stake money on those events say that such an outcome is “fixed”
(a very appropriate word) and not random.

Now I attempt more difficult maneuvers with the remote control. I can do 11
2 flips pretty well,

and two full revolutions with some success — maybe even 21
2 flips on a good day. But when

I get much beyond that, I cannot determine very well whether I’ll get the sofa or the TV end.
The outcome gradually becomes less and less predictable — that is, more and more random.

If I flip the remote control so that it revolves three or more times, I can hardly control the
process at all, and hence I cannot predict well whether I’ll get the sofa end or the TV end.
With 5 revolutions I have absolutely no control over the outcome; I cannot predict the outcome
better than 50-50. At that point, getting the sofa end or the TV end has become a completely
random event for our purposes, just like flipping a coin high in the air. So at that point we
say that “chance” controls the outcome, though that word is just a synonym for my lack of
ability to control and predict the outcome. “Chance” can be thought to stand for the myriad
small factors that influence the outcome.

We see the same gradual increase in randomness with increasing numbers of shuffles of cards.
After one shuffle, a skilled magician can know where every card is, and after two shuffles there
is still much order that s/he can work with. But after (say) five shuffles, the magician no longer
has any power to predict and control, and the outcome of any draw can then be thought of as
random chance.

At what point do we say that the outcome is “random” or “pure chance” as to whether my
hand will grasp the TV end, the sofa end, or at some other spot? There is no sharp boundary
to this transition. Rather, the transition is gradual; this is the crucial idea, and one that I
have not seen stated before.

Whether or not we refer to the outcome as random depends upon the twirler’s skill, which
influences how predictable the event is. A baton twirler or juggler might be able to do ten flips

61



with a non-random outcome; if the twirler is an expert and the outcome is highly predictable,
we say it is not random but rather is determined.

Again, this shows that the randomness is not a property of the physical event, but rather of a
person’s knowledge and skill.

3.8 What Do We Mean by “Random”?

We have defined “chance” and “random” as the absence of predictive power and/or explanation
and/or control. Here we should not confuse the concepts of determinacy-indeterminacy and
predictable-unpredictable. What matters for decision purposes is whether you can predict.
Whether the process is “really” determinate is largely a matter of definition and labeling, an
unnecessary philosophical controversy for our purposes (and perhaps for any other purpose).3

The remote control in the previous demonstration becomes unpredictable — that is, random
— even though it still is subject to similar physical processes as when it is predictable. I do
not deny in principle that these processes can be “understood,” or that one could produce a
machine that would — like a baton twirler — make the course of the remote control predictable
for many turns. But in practice we cannot make the predictions — and it is the practical reality,
rather than the principle, that matters here.

When I flip the remote control half a turn or one turn, I control (almost completely) whether
it comes down at the sofa end end or the TV end, so we do not say that the outcome is chance.
Much the same can be said about what happens to the predictability of drawing a given card
as one increases the number of times one shuffles a deck of cards.

Consider, too, a set of fake dice that I roll. Before you know they are fake, you assume that
the probabilities of various outcomes is a matter of chance. But after you know that the
dice are loaded, you no longer assume that the outcome is chance. This illustrates how the
probabilities you work with are influenced by your knowledge of the facts of the situation.

Admittedly, this way of thinking about probability takes some getting used to. Events may
appear to be random, but in fact, we can predict them — and vice versa. For example, suppose
a magician does a simple trick with dice such as this one:

The magician turns her back while a spectator throws three dice on the table. He
is instructed to add the faces. He then picks up any one die, adding the number on
the bottom to the previous total. This same die is rolled again. The number it now

3The idea that our aim is to advance our work in improving our knowledge and our decisions, rather than to
answer “ultimate” questions about what is “really” true is in the same spirit as some writing about quantum
theory. In 1930 Ruarck and Urey wrote: “The reader who feels disappointed that the information sought
in solving a dynamical problem on the quantum theory is [only] statistical … should console himself with
the thought that we seldom need any information other than that which is given by the quantum theory.”
(1930, 622).
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shows is also added to the total. The magician turns around. She calls attention
to the fact that she has no way of knowing which of the three dice was used for
the second roll. She picks up the dice, shakes them in her hand a moment, then
correctly announces the final sum.

Method:. When the spectator rolls the dice, they get three numbers, one from each of the
three dice. Call these numbers 𝑎, 𝑏 and 𝑐. Then he chooses one die — it doesn’t matter which,
but let’s say he chooses the third die, with value 𝑐. He adds the bottom of the third die to
the total. Here’s the trick: the total of opposite faces on a standard die always add up to 7;
1 is opposite 6, 2 is opposite 5, and 3 is opposite 4. So the total is now 𝑎 + 𝑏 + 7. Then the
spectator rolls the third die again, to get a new number 𝑑. The total is now 𝑎 + 𝑏 + 7 + 𝑑.
When the magician turns round she can see what 𝑎 and 𝑏 and 𝑑 are, so to get the right final
total, she just needs to add 7 (Gardner 1985, p259). Ben Sparks does a nice demonstration of
the trick on Numerphile YouTube.

The point here is that, until you know the trick, you (the magician) cannot predict the final
sum, so the magician and the spectator consider the result as random. If you do know the
trick, you can predict the result, and it is not random. Whether something is “random” or
not, depends on what you know.

Consider the distributions of heights of various groups of living things (including people).
When we consider all living things taken together, the shape of the overall distribution —
many individuals at the tiny end where the viruses are found, and very few individuals at
the tall end where the giraffes are — is determined mostly by the distribution of species that
have different mean heights. Hence we can explain the shape of that distribution, and we do
not say that is determined by “chance.” But with a homogeneous cohort of a single species
— say, all 25-year-old human females in the U.S. — our best description of the shape of the
distribution is “chance.” With situations in between, the shape is partly due to identifiable
factors — e.g. age — and partly due to “chance.”

Or consider the case of a basketball shooter: What causes her or him to make (or not make) a
basket this shot, after a string of successes? Much must be ascribed to chance variation. But
what causes a given shooter to be very good or very poor relative to other players? For that
explanation we can point to such factors as the amount of practice or natural talent.

Again, all this has nothing to do with whether the mechanism is “really” chance, unlike the
arguments that have been raging in physics for a century. That is the point of the remote
control demonstration. Our knowledge and our power to predict the outcome gradually transits
from non-chance (that is, “determined”) to chance (“not determined”) in a gradual way even
though the same sort of physical mechanism produces each throw of the remote control.

Earlier I mentioned that when we say that chance controls the outcome of the remote control
flip after (say) five revolutions, we mean that there are many small forces that affect the
outcome. The effect of each force is not known, and each is independent of the other. None of
these forces is large enough for me (as the remote control twirler) to deal with, or else I would
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deal with it and be able to improve my control and my ability to predict the outcome. This
concept of many small influences — “small” meaning in practice those influences whose effects
cannot be identified and allowed for — which affect the outcome and whose effects are not
knowable and which are independent of each other is important in statistical inference. For
example, as we will see later, when we add many unpredictable deviations together, and plot
the distribution of the result, we end up with the famous and very common bell-shaped normal
distribution — this striking result comes about because of a mathematical phenomenon called
the Central Limit Theorem.4

3.9 Randomness from the computer

We now have the idea of random variation as being variation we cannot predict. For example,
when we flip the remote control through many rotations, we can no longer easily predict which
end will land in our hand. We can call the result of any particular flip — random — because
we cannot predict whether the result will be TV end or sofa end.

We still know some things about the result — it will be one of two options — TV or sofa
(unless we drop it). But we cannot predict which. We say the result of each flip is random
if we cannot do anything to improve our prediction of 50% for TV (or sofa) end on the next
flip.

We are not saying the result is random in any deep, non-deterministic sense — we are only
saying we can treat the result as random, because we cannot predict it.

Now consider getting random numbers from the computer, where the numbers can either be 0
or 1. This is rather like tossing a fair coin, where the results are 0 and 1 rather than “heads”
and “tails”.

When we ask the computer for a random choice between 0 and 1, we accept it is random-enough,
or random-like, if we can’t do anything to predict which of 0 or 1 we will get on any one trial.
We can’t do better than guessing that the next value will be — say — 0 — and whichever
number we guess, we will only ever have a 50% chance of being correct. We are not saying
the computer is giving truly random numbers in the sense that they are fundamentally not
deterministic, it is only giving us numbers we cannot distinguish from truly random numbers,
because we cannot in practice do anything to predict them. The technical term for random
numbers from the computer is therefore pseudo-random — meaning, like random numbers,
in the sense they are effectively unpredictable. Effectively unpredictable means there is no
practical way for you, or even a very powerful computer, to do anything to improve your
prediction of the next number in the series.

4The Central Limit Theorem is an interesting mathematical result that proves something you can show for
yourself by simulation — that if we take means of many values drawn from any shape of distribution, and
then look at the distribution of the resulting means, it will be close to the normal (bell-curve) distribution.
If you are interested in a technical (mathematical) explanation of this result, see the Wikipedia page on the
Central Limit Theorem.
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3.10 The philosophers’ dispute about the concept of probability

Those who call themselves “objectivists” or “frequentists” and those who call themselves “per-
sonalists” or “Bayesians” have been arguing for hundreds or even thousands of years about the
“nature” of probability. The objectivists insist (correctly) that any estimation not based on a
series of observations is subject to potential bias, from which they conclude (incorrectly) that
we should never think of probability that way. They are worried about the perversion of sci-
ence, the substitution of arbitrary assessments for value-free data-gathering. The personalists
argue (correctly) that in many situations it is not possible to obtain sufficient data to avoid
considerable judgment. Indeed, if a probability is about the future, some judgment is always
required — about which observations will be relevant, and so on. They sometimes conclude
(incorrectly) that the objectivists’ worries are unimportant.

As is so often the case, the various sides in the argument have different sorts of situations in
mind. As we have seen, the arguments disappear if one thinks operationally with respect to
the purpose of the work, rather than in terms of properties, as mentioned earlier.

Here is an example of the difficulty of focusing on the supposed properties of the mechanism
or situation: The mathematical theorist asserts that the probability of a die falling with the
“5” side up is 1/6, on the basis of the physics of equally-weighted sides. But if one rolls a
particular die a million times, and it turns up “5” less than 1/6 of the time, one surely would
use the observed proportion as the practical estimate. The probabilities of various outcomes
with cheap dice may depend upon the number of pips drilled out on a side. In 20,000 throws
of a red die and 20,000 throws of a white die, the proportions of 3’s and 4’s were, respectively,
.159 and .146, .145 and .142 — all far below the expected proportions of .167. That is, 3’s and
4’s occurred about 11 percent less often that if the dice had been perfectly formed, a difference
that could make a big difference in a gambling game (Bulmer 1979, 18).

It is reasonable to think of both the engineering method (the theoretical approach) and the
empirical method (experimentation and data collection) as two alternative ways to estimate a
probability. The two methods use different processes and different proxies for the probability
you wish to estimate. One must adduce additional knowledge to decide which method to use
in any given situation. It is sensible to use the empirical method when data are available. (But
use both together whenever possible.)

In view of the inevitably subjective nature of probability estimates, you may prefer to talk
about “degrees of belief” instead of probabilities. That’s fine, just as long as it is understood
that we operate with degrees of belief in exactly the same way as we operate with probabilities.
The two terms are working synonyms.

Most important: One cannot sensibly talk about probabilities in the abstract, without refer-
ence to some set of facts. The topic then loses its meaning, and invites confusion and argument.
This also is a reason why a general formalization of the probability concept does not make
sense.
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3.11 The relationship of probability to the concept of resampling

There is no all-agreed definition of the concept of the resampling method in statistics. Unlike
some other writers, I prefer to apply the term to problems in both pure probability and statistics.
This set of examples may illustrate:

1. Consider asking about the number of hits one would expect from a 0.250 (25 percent)
batter in a 400 at-bat season. One would call this a problem in “probability.” The
sampling distribution of the batter’s results can be calculated by formula or produced
by Monte Carlo simulation.

2. Now consider examining the number of hits in a given batter’s season, and asking how
likely that number (or fewer) is to occur by chance if the batter’s long-run batting average
is 0.250. One would call this a problem in “statistics.” But just as in example (1) above,
the answer can be calculated by formula or produced by Monte Carlo simulation. And
the calculation or simulation is exactly the same as used in (1).

Here the term “resampling” might be applied to the simulation with considerable agree-
ment among people familiar with the term, but perhaps not by all such persons.

3. Next consider an observed distribution of distances that a batter’s hits travel in a season
with 100 hits, with an observed mean of 150 feet per hit. One might ask how likely it
is that a sample of 10 hits drawn with replacement from the observed distribution of
hit lengths (with a mean of 150 feet) would have a mean greater than 160 feet, and one
could easily produce an answer with repeated Monte Carlo samples. Traditionally this
would be called a problem in probability.

4. Next consider that a batter gets 10 hits with a mean of 160 feet, and one wishes to
estimate the probability that the sample would be produced by a distribution as specified
in (3). This is a problem in statistics, and by 1996, it is common statistical practice to
treat it with a resampling method. The actual simulation would, however, be identical
to the work described in (3).

Because the work in (4) and (2) differ only in question (4) involving measured data and question
(2) involving counted data, there seems no reason to discriminate between the two cases with
respect to the term “resampling.” With respect to the pairs of cases (1) and (2), and (3) and
(4), there is no difference in the actual work performed, though there is a difference in the way
the question is framed. I would therefore urge that the label “resampling” be applied to (1)
and (3) as well as to (2) and (4), to bring out the important fact that the procedure is the
same as in resampling questions in statistics.

One could easily produce examples like (1) and (2) for cases that are similar except that the
drawing is without replacement.5 And one could adduce the example of prices in different

5One example of drawing without replacement is the sampling version of Ronald Fisher’s permutation test —
see (Fisher 1935; Fisher 1960, chap. II, section 5).
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state liquor control systems (see Section 12.15) which is similar to cases (3) and (4) except
that sampling without replacement seems appropriate. Again, the analogs to cases (2) and (4)
would generally be called “resampling.”

The concept of resampling is defined in a more precise way in Section 8.9.

3.12 Conclusion

We define “chance” as the absence of predictive power and/or explanation and/or control.

When the remote control rotates more than three or four turns I cannot control the outcome
— whether TV or sofa end — with any accuracy. That is to say, I cannot predict much better
than 50-50 with more than four rotations. So we then say that the outcome is determined by
“chance.”

As to those persons who wish to inquire into what the situation “really” is: I hope they agree
that we do not need to do so to proceed with our work. I hope all will agree that the outcome
of flipping the TV gradually becomes unpredictable (random) though still subject to similar
physical processes as when predictable. I do not deny in principle that these processes can
be “understood,” certainly one can develop a machine (or a baton twirler) that will make the
outcome predictable for many turns. But this has nothing to do with whether the mechanism
is “really” something one wants to say is influenced by “chance.” This is the point of the
demonstration with the sofa and TV ends of the remote control. The outcome traverses from
non-chance (determined) to chance (not determined) in a smooth way even though the physical
mechanism that produces the revolutions remains much the same over the traverse.
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4 Introducing Python and the Jupyter
notebook

This chapter introduces you to the technology we will use throughout the book. By technology,
we mean two things:

• The Python programming language, along with some important add-on libraries for data
analysis.

• The Jupyter notebook system for running and editing Python code in a web interface.

Using Python on the web and on your computer

In this chapter, we concentrate on the technology we use for the interactive version of
the book. The interactive version allows you to run Python code as interactive notebooks
in your web browser.
Either now, or later, you should also consider running the code on your own computer
— see Section 4.10.

The chapter introduces Python and its packages, and then gives an example to introduce
Python and the Jupyter Notebook. If you have not used Python before, the example notebook
will get you started. The example also shows how we will be using notebooks through the rest
of the book.

4.1 Python and its packages

This version of the book uses the Python1 programming language to implement resampling
algorithms.

Python is a programming language that can be used for many tasks. It is a popular language
for teaching, but has also become standard in industry and academia. It is one of the most
widely used programming languages in the world, and the most popular language for data
science.

1https://www.python.org
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For many of the initial examples, we will also be using the Numpy2 package for Python. A
Python package is a library of Python code and data. Numpy is a package that makes it easier
to work with sequences of data values, such as sequences of numbers. These are typical in
probability and statistics.

Later, we be using the Matplotlib3 package. This is the main Python package with code for
producing plots, such as bar charts, histograms, and scatter plots. See the rest of the book for
more details on these plots.

Still further on in the book, we will use more specialized libraries for data manipulation and
analysis. Pandas4 is the standard Python package for loading data files and working with
data tables. Scipy5 is a package that houses a wide range of numerical routines, including
some simple statistical methods. The Statsmodels6 package has code for many more statistical
procedures. We will find ourselves comparing the results of our own resampling algorithms to
those in Scipy and Statsmodels.

It is very important that Python is a programming language and not a set of canned routines
for “doing statistics”. It means that we can explore the ideas of probability and statistics using
the language of Python to express those ideas. It also means that you, and we, and anyone
else in the world, can write new code to share with others, so they can benefit from our work,
understand it, and improve it. This book is one example; we have written the Python code in
this book as clearly as we can to make it easy to follow, and to explain the underlying ideas.
We hope you will help us by testing what we have done and sending us suggestions for ways
we could improve. Please see ?@sec-book-as-public for more information about how to do
that.

4.2 The environment

Many of the chapters have sections with code for you to run, and experiment with. These
sections contain Jupyter notebooks[^jupyter-nb]. Jupyter notebooks are interactive web pages
that allow you to read, write and run Python code. We mark the start of each notebook
in the text with a note and link heading like the one you see below. In the web edition of
this book, you can click on the Download link in this header to download the section as a
notebook. You can also click on the Interact link in this header to open the notebook in your
web browser, using a system called JupyterLite. You can run the code, and experiment by
making changes.

2https://numpy.org
3https://matplotlib.org
4https://pandas.pydata.org
5https://scipy.org
6https://www.statsmodels.org
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About JupyterLite

JupyterLite7 is a version of the Jupyter notebook and Python that will automatically
download and run inside your web browser.
When you click on the “Interact” link, it will take you to a web address that has the
effect of making your browser download the JupyterLite system, along with compatible
versions of Python and its standard packages . The web page that opens allows you run
to the Python code in the notebook inside your browser.

In the print version of the book, we point you to the web version, to get the links.

At the end of this chapter, we explain how to run these notebooks on your own computer. In
the next section you will see an example notebook; to start with, you might want to run this
in your browser using the “Interact” link.

4.3 Getting started with the notebook

The next section contains a notebook called “Billie’s Bill”. If you are looking at the web
edition, you will see links to interact with this notebook in your browser, or download it to
your computer.

Note 3: Notebook: Billie’s Bill

• Download notebook
• Interact

The text in this notebook section assumes you have opened the page as an interactive notebook
on the web, or on your own computer (see Section 4.10).

A notebook can contain blocks of text — like this one — as well as code, and the results from
running the code.

Jupyter Notebooks are made up of cells.

Jupyter cells can contain text or code.

Notebook text can have formatting, such as links.

For example, this sentence ends with a link to the earlier second edition of this book.

If you are in the interactive notebook interface (rather than reading this in the textbook), you
will see the Jupyter menu bar near the top of the page, with headings “File”, “Edit” and so
on.

7https://jupyterlite.readthedocs.io
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In Jupyter, underneath the File … menu bar, by default, you may see a row of icons - the
“Toolbar”.

In the Jupyter toolbar, you may see icons to run the current cell, among others.

To move from one cell to the next, you can click the run icon in the toolbar, but it is more
efficient to press the Shift key, and press Enter (with Shift still held down). We will write this
as Shift-Enter.

In this, our first notebook, we will be using Python to solve one of those difficult and troubling
problems in life — working out the bill in a restaurant.

4.4 The meal in question

Alex and Billie are at a restaurant, getting ready to order. They do not have much money, so
they are calculating the expected bill before they order.

Alex is thinking of having the fish for £10.50, and Billie is leaning towards the chicken, at
£9.25. First they calculate their combined bill.

Below this text you see a code cell. It contains the Python code to calculate the total bill.
Press Shift-Enter in the cell below, to see the total..

10.50 + 9.25

19.75

The contents of the cell above is Python code. As you would predict, Python understands
numbers like 10.50, and it understands + between the numbers as an instruction to add the
numbers.

When you press Shift-Enter, Python finds 10.50, realizes it is a number, and stores that
number somewhere in memory. It does the same thing for 9.25, and then it runs the addition
operation on these two numbers in memory, which gives the number 19.75.

Finally, Python sends the resulting number (19.75) back to the notebook for display. The
notebook detects that Python sent back a value, and shows it to us.

This is exactly what a calculator would do.
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4.5 Comments

Unlike a calculator, we can also put notes next to our calculations, to remind us what they
are for. One way of doing this is to use a “comment”. You have already seen comments in the
previous chapter.

A comment is some text that the computer will ignore. In Python, you can make a comment
by starting a line with the # (hash) character. For example, the next cell is a code cell, but
when you run it, it does not show any result. In this case, that is because the computer sees
the # at the beginning of the line, and then ignores the rest.

# This bit of text is for us to read, and the computer to ignore.

Many of the code cells you see will have comments in them, to explain what the code is
doing.

Practice writing comments for your own code. It is a very good habit to get into. You will
find that experienced programmers write many comments on their code. They do not do this
to show off, but because they have a lot of experience in reading code, and they know that
comments make it much easier to read and understand code.

4.6 More calculations

Let us continue with the struggle that Alex and Billie are having with their bill.

They realize that they will also need to pay a tip.

They think it would be reasonable to leave a 15% tip. Now they need to multiply their total
bill by 0.15, to get the tip. The bill is about £20, so they know that the tip will be about
£3.

In Python * means multiplication. This is the equivalent of the “×” key on a calculator.

What about this, for the correct calculation?

# The tip - with a nasty mistake.
10.50 + 9.25 * 0.15

11.8875
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Oh dear, no, that isn’t doing the right calculation.

Python follows the normal rules of precedence with calculations. These rules tell us to do
multiplication before addition.

See https://en.wikipedia.org/wiki/Order_of_operations for more detail on the standard
rules.

In the case above the rules tell Python to first calculate 9.25 * 0.15 (to get 1.3875) and
then to add the result to 10.50, giving 11.8875.

We need to tell Python we want it to do the addition and then the multiplication. We do this
with round brackets (parentheses):

Note 4: Three types of brackets in Python

There are three types of brackets in Python.
These are:

• round brackets or parentheses: ();
• square brackets: [];
• curly brackets: {}.

Each type of bracket has a different meaning in Python. In the examples, play close to
attention to the type of brackets we are using.

# The bill plus tip - mistake fixed.
(10.50 + 9.25) * 0.15

2.9625

The obvious next step is to calculate the bill including the tip.

# The bill, including the tip
10.50 + 9.25 + (10.50 + 9.25) * 0.15

22.7125

At this stage we start to feel that we are doing too much typing. Notice that we had to type
out 10.50 + 9.25 twice there. That is a little boring, but it also makes it easier to make
mistakes. The more we have to type, the greater the chance we have to make a mistake.
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4.7 Variables

To make things simpler, we would like to be able to store the result of the calculation 10.50
+ 9.25, and then re-use this value, to calculate the tip.

This is the role of variables. A variable is a value with a name.

Here is a variable:

# The cost of Alex's meal.
a = 10.50

a is a name we give to the value 10.50. You can read the line above as “The variable a gets the
value 10.50”. We can also talk of setting the variable. Here we are setting a to equal 10.50.

Now, when we use a in code, it refers to the value we gave it. For example, we can put a on a
line on its own, and Python will show us the value of a:

# The value of a
a

10.5

We did not have to use the name a — we can choose almost any name we like. For example,
we could have chosen alex_meal instead:

# The cost of Alex's meal.
# alex_meal gets the value 10.50
alex_meal = 10.50

We often set variables like this, and then display the result, all in the same cell. We do this by
first setting the variable, as above, and then, on the final line of the cell, we put the variable
name on a line on its own, to ask Python to show us the value of the variable. Here we set
billie_meal to have the value 9.25, and then show the value of billie_meal, all in the same
cell.

# The cost of Billie's meal.
billie_meal = 9.25
# Show the value of billies_meal
billie_meal

9.25
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Of course, here, we did not learn much, but we often set variable values with the results of a
calculation. For example:

# The cost of both meals, before tip.
bill_before_tip = 10.50 + 9.25
# Show the value of both meals.
bill_before_tip

19.75

But wait — we can do better than typing in the calculation like this. We can use the values
of our variables, instead of typing in the values again.

# The cost of both meals, before tip, using variables.
bill_before_tip = alex_meal + billie_meal
# Show the value of both meals.
bill_before_tip

19.75

We make the calculation clearer by writing the calculation this way — we are calculating the
bill before the tip by adding the cost of Alex’s and Billie’s meal — and that’s what the code
looks like. But this also allows us to change the variable value, and recalculate. For example,
say Alex decided to go for the hummus plate, at £7.75. Now we can tell Python that we want
alex_meal to have the value 7.75 instead of 10.50:

# The new cost of Alex's meal.
# alex_meal gets the value 7.75
alex_meal = 7.75
# Show the value of alex_meal
alex_meal

7.75

Notice that alex_meal now has a new value. It was 10.50, but now it is 7.75. We have reset
the value of alex_meal. In order to use the new value for alex_meal, we must recalculate the
bill before tip with exactly the same code as before:
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# The new cost of both meals, before tip.
bill_before_tip = alex_meal + billie_meal
# Show the value of both meals.
bill_before_tip

17.0

Notice that, now we have rerun this calculation, we have reset the value for bill_before_tip
to the correct value corresponding to the new value for alex_meal.

All that remains is to recalculate the bill plus tip, using the new value for the variable:

# The cost of both meals, after tip.
bill_after_tip = bill_before_tip + bill_before_tip * 0.15
# Show the value of both meals, after tip.
bill_after_tip

19.55

Now we are using variables with relevant names, the calculation looks right to our eye. The
code expresses the calculation as we mean it: the bill after tip is equal to the bill before the
tip, plus the bill before the tip times 0.15.

4.8 And so, on

Now you have done some practice with the notebook, and with variables, you are ready for a
new problem in probability and statistics, in the next chapter.

4.9 Saving your work

If you are running this notebook via the “Interact” button, you are running it using the
JupyterLite system. Please bear in mind that your browser keeps all the notebooks you
run in JupyterLite, in its browser cache — a private and temporary store that the browser
maintains somewhere on your system. If you want to keep any changes you make to notebooks
you have run with the “Interact” JupyterLite system, you might want to save a copy of the
notebook outside the browser cache. To do this, look the pane to the left of the notebook
for the name of the notebook. This name of this particular notebook is “billies_bill”, and
you will see the notebook file in the left pane listed as billies_bill.ipynb. If you want
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to save a copy to your computer, first use the “File” menu, and the “Save” option, to save
your notebook. This saves the notebook to your browser’s private store (the cache). Next
right-click on billies_bill.ipynb in the left pane (see Figure 4.1), and choose “Download”.
Save the file somewhere memorable on your computer. You can go back to the notebook by
following the instructions at Section 4.10.

End of notebook: Billie’s Bill

billies_bill starts at Note 3.

Figure 4.1: Downloading files in JupyterLite
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4.10 Running the code on your own computer

Many people, including your humble authors, like to be able to run code examples on their
own computers. This section explains how you can set up to run the notebooks on your own
computer.

Once you have done this setup, you can use the “download” link that you will see for each
notebook, to download the notebook to your machine. From there, you can open the notebook
on Jupyter.

Note 5: Download links and data files

Most of the download links in this book will trigger a download of the notebook file. This
is a file with extension .ipynb, that you can open with Jupyter.
Later in the book, you will see examples where the notebook loads a data file. In that
case, the download link for the notebook points to a .zip file containing the notebook
and the data file. Unzip the .zip file to get the notebook and data file, and then open
the resulting notebook in Jupyter.

You will need to install the Python language on your computer, and then install the following
packages:

• Numpy — to work with arrays;
• Matplotlib - for plots;
• Scipy - a collection of modules for scientific computing;
• Pandas - for loading, saving and manipulating data tables;
• Statsmodels - for traditional statistical analysis;
• Jupyter - to run the Jupyter Notebook on your own computer.

One way to install Python and the packages you need, is to install Python from the Python
website8. Then use the Pip9 installer to install the packages you need.

To install the Python packages, first start a terminal application on your computer. To do
this, you can use the Start key, “cmd” in Windows, or the Command key and space then
“Terminal” on Mac. At the terminal prompt, type the following command:

Now you should be able to start the Jupyter notebook application. See the Jupyter documen-
tation for how to start Jupyter. Open the notebook you downloaded for the chapter; you will
now be able to run the code on your own computer, and experiment by making changes.

You can run any of the code notebooks in this textbook on your own machine by downloading
the notebook, via the download link at the top of each notebook section, and then opening
the resulting notebook in Jupyter.

8https://www.python.org
9https://pip.pypa.io
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5 Resampling with code

Chapter 2 used simulation and resampling from tables of random numbers, dice, and coins.
Making random choices in this way can make it easier to understand the process, but of course,
physical methods of making random outcomes can be slow and boring.

We saw that short computer programs can do a huge number of resampling trials in a less
than a second. The flexibility of a programming language makes it possible to simulate many
different outcomes and tests.

Programs can build up tables of random numbers, and do basic tasks like counting the number
of values in a row or taking proportions. With these simple tools, we can simulate many
problems in probability and statistics.

In this chapter, we will model another problem using Python, but this chapter will add three
new things.

• The problem we will work on is a little different from the ambulances problem from
Chapter 2. It is a real problem about deciding whether a new cancer treatment is better
than the alternatives, and it introduces the idea of making a model of the world, to ask
questions about chances and probabilities.

• We will slow down a little to emphasize the steps in solving this kind of problem. First
we work out how to simulate a single trial. Then we work out how to run many simulated
trials.

• We sprinted through the code in Chapter 2, with the promise we would come back to the
details. Here we go into more detail about some ideas from the code in the last chapter.
These are:

– Storing several values together in one place, with arrays.
– Using functions (code recipes) to apply procedures.
– Comparing numbers to other numbers.
– Counting numbers that match a condition.

In the next chapter, we will talk more about using arrays to store results, and for loops to
repeat a procedure many times.

79



5.1 Statistics and probability

We have already emphasized that statistics is a way of drawing conclusions about data from
the real world, in the presence of random variation; probability is the way of reasoning about
random variation. This chapter introduces our first statistical problem, where we use proba-
bility to draw conclusions about some important data — about a potential cure for a type of
cancer. We will not make much of the distinction between probability and statistics here, but
we will come back to it several times in later chapters.

5.2 A new treatment for Burkitt lymphoma

Burkitt lymphoma is an unusual cancer of the lymphatic system. The lymphatic system is a
vein-like network throughout the body that is involved in the immune reaction to disease. In
developed countries, with standard treatment, the cure rate for Burkitt lymphoma is about
90%.

In 2006, researchers at the US National Cancer Institute (NCI), tested a new treatment for
Burkitt lymphoma (Dunleavy et al. 2006). They gave the new treatment to 17 patients, and
found that all 17 patients were doing well after two years or more of follow up. By “doing
well”, we mean that their lymphoma had not progressed; as a short-hand, we will say that
these patients were “cured”, but of course, we do not know what happened to them after this
follow up.

Here is where we put on our statistical hat and ask ourselves the following question — how
surprised are we that the NCI researchers saw their result of 17 out of 17 patients cured?

At this stage you might and should ask, what could we possibly mean by “surprised”? That is
a good and important question, and we will discuss that much more in the chapters to come.
For now, please bear with us as we do a thought experiment.

Let us forget the 17 out of 17 result of the NCI study for a moment. Imagine that there is
another hospital, called Saint Hypothetical General, just down the road from the NCI, that
was also treating 17 patients with Burkitt lymphoma. Saint Hypothetical were not using the
NCI treatment, they were using the standard treatment.

We already know that each patient given the standard treatment has a 90% chance of cure.
Given that 90% cure rate, what is the chance that 17 out of 17 of the Hypothetical group will
be cured?

You may notice that this question about the Hypothetical group is similar to the problem of
the 16 ambulances in Chapter 2. In that problem, we were interested to know how likely it
was that 3 or more of 16 ambulances would be out of action on any one day, given that each
ambulance had a 10% chance of being out of action. Here we would like to know the chances
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that all 17 patients would be cured, given that each patient has a 90% chance of being cured
(and a 10% chance of relapse).

5.3 A physical model of the hypothetical hospital

As in the ambulance example, we could make a physical model of chance in this world. For
example, to simulate whether a given patient is cured or not by a 90% effective treatment, we
could throw a ten sided die and record the result. We could say, arbitrarily, that a result of 0
means “not cured”, and all the numbers 1 through 9 mean “cured” (typical 10-sided dice have
sides numbered 0 through 9).

We could roll 17 dice to simulate one “trial” in this random world. For each trial, we record
the number of dice that show numbers 1 through 9 (and not 0). This will be a number between
0 and 17, and it is the number of patients “cured” in our simulated trial.

Figure 5.1 is the result of one such trial we did with a set of 17 10-sided dice we happened to
have to hand:

The trial in Figure 5.1 shows are four dice with the 0 face uppermost, and the rest with
numbers from 1 through 9. Therefore, there were 13 out of 17 not-zero numbers, meaning that
13 out of 17 simulated “patients” were “cured” in this simulated trial.

We could repeat this simulated trial procedure 100 times, and we would then have 100 counts
of the not-zero numbers. Each of the 100 counts would be the number of patients cured in that
trial. We can ask how many of these 100 counts were equal to 17. This will give us an estimate
of the probability we would see 17 out of 17 patients cured, given that any one patient has a
90% chance of cure. For example, say we saw 15 out of 100 counts were equal to 17. That
would give us an estimate of 15 / 100 or 0.15 or 15%, for the probability we would see 17 out
of 17 patients cured.

So, if Saint Hypothetical General did see 17 out of 17 patients cured with the standard treat-
ment, they would be a little surprised, because they would only expect to see that happen
15% of the time. But they would not be very surprised — 15% of the time is uncommon, but
not very uncommon.

5.4 A trial, a run, a count and a proportion

Here we stop to emphasize the steps in the process of a random simulation.

1. We decide what we mean by one trial. Here one trial has the same meaning in medicine
as resampling — we mean the result of treating 17 patients. One simulated trial is then
the simulation of one set of outcomes from 17 patients.
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Figure 5.1: One roll of 17 10-sided dice
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2. Work out the outcome of interest from the trial. The outcome here is the number of
patients cured.

3. We work out a way to simulate one trial. Here we chose to throw 17 10-sided dice, and
count the number of not zero values. This is the outcome from one simulation trial.

4. We repeat the simulated trial procedure many times, and collect the results from each
trial. Say we repeat the trial procedure 100 times; we will call this a run of 100 trials.

5. We count the number of trials with an outcome that matches the outcome we are inter-
ested in. In this case we are interested in the outcome 17 out of 17 cured, so we count the
number of trials with a score of 17. Say 15 out of the run of 100 trials had an outcome
of 17 cured. That is our count.

6. Finally we divide the count by the number of trials to get the proportion. From the
example above, we divide 15 by 100 to 0.15 (15%). This is our estimate of the chance of
seeing 17 out of 17 patients cured in any one trial. We can also call this an estimate of
the probability that 17 out of 17 patients will be cured on any on trial.

Our next step is to work out the code for step 2: simulate one trial.

5.5 Simulate one trial with code

We can use the computer to do something very similar to rolling 17 10-sided dice, by asking
the computer for 17 random whole numbers from 0 through 9.

Whole numbers

A whole number is a number that is not negative, and does not have fractional part (does
not have anything after a decimal point). 0 and 1 and 2 and 3 are whole numbers, but
-1 and 3

5 and 11.3 are not. The whole numbers from 0 through 9 are 0, 1, 2, 3, 4, 5, 6, 7,
8, 9.

We have already discussed what we mean by random in Section 2.2.

We will be asking the computer to generate many random numbers. So, before we start, we
again import Numpy and get its random number generator:

import numpy as np

# Ask for Numpy's default random number generator and name
# it `rnd`. `rnd` is short for "random".
rnd = np.random.default_rng()
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5.6 From numbers to arrays

We next need to prepare the sequence of numbers that we want NumPy to select from.

We have already seen the idea that Python has values that are individual numbers. Remember,
a variable is a named value. Here we attach the name a to the value 1.

a = 1
# Show the value of "a"
a

1

NumPy also allows values that are sequences of numbers. NumPy calls these sequences ar-
rays.

Here we make a array that contains the 10 numbers we will select from:

# Make an array of numbers, store with the name "some_numbers".
some_numbers = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# Show the value of "some_numbers"
some_numbers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Notice that the value for some_numbers is an array, and that this value contains 10 numbers.

Put another way, some_numbers is now the name we can use for this collection of 10 values.

Arrays are very useful for simulations and data analysis, and we will be using these for nearly
every example in this book.

5.7 Functions

Functions are another tool that we will be using everywhere, and that you seen already, al-
though we have not introduced them until now.

You can think of functions as named production lines.

For example, consider the Python function np.round
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# We load the Numpy library so we have access to the Numpy functions.
import numpy as np

np.round is the name for a simple production line, that takes in a number, and (by default)
sends back the number rounded to the nearest integer.

What is an integer?

An integer is a positive or negative whole number.
In other words, a number is an integer if the number is either a whole number (0, 1, 2
…), or a negative whole number (-1, -2, -3 …). All of -208, -2, 0, 10, 105 are integers, but
3
5 , -10.3 and 0.2 are not.
We will use the term integer fairly often, because it is a convenient way to name all the
positive and negative whole numbers.

Think of a function as a named production line. We sent the function (production line) raw
material (components) to work on. The production line does some work on the components.
A finished result comes off the other end.

Therefore, think of np.round as the name of a production line, that takes in a component (in
this case, any number), and does some work, and sends back the finished result (in this case,
the number rounded to the nearest integer.

The components we send to a function are called arguments. The finished result the function
sends back is the return value.

• Arguments: the value or values we send to a function.
• Return value: the values the function sends back.

See Figure 5.2 for an illustration of np.round as a production line.

In the next few code cells, you see examples where np.round takes in a not-integer number,
as an argument, and sends back the nearest integer as the return value:

# Put in 3.2, round sends back 3.
np.round(3.2)

np.float64(3.0)

# Put in -2.7, round sends back -3.
np.round(-2.7)

np.float64(-3.0)
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3.7Argument:

Return value:

Name:

round

round to
nearest integer

3
Figure 5.2: The round function as a production line
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Like many functions, np.round can take more than one argument (component). You can send
round the number of digits you want to round to, after the number of you want it to work on,
like this (see Figure 5.3):

# Put in 3.1415, and the number of digits to round to (2).
# round sends back 3.14
np.round(3.1415, 2)

np.float64(3.14)

Notice that the second argument — here 2 — is optional. We only have to send round one
argument: the number we want it to round. But we can optionally send it a second argument
— the number of decimal places we want it to round to. If we don’t specify the second
argument, then round assumes we want to round to 0 decimal places, and therefore, to the
nearest integer.

5.8 Functions and named arguments

In the example above, we sent round two arguments. round knows that we mean the first
argument to be the number we want to round, and the second argument is the number of
decimal places we want to round to. It knows which is which by the position of the arguments
— the first argument is the number it should round, and second is the number of digits.

In fact, internally, the round function also gives these arguments names. It calls the number
it should round — a — and the number of digits it should round to — decimals. This is
useful, because it is often clearer and simpler to identify the argument we are specifying with
its name, instead of just relying on its position.

If we aren’t using the argument names, we call the round function as we did above:

# Put in 3.1415, and the number of digits to round to (2).
# round sends back 3.14
np.round(3.1415, 2)

np.float64(3.14)

In this call, we relied on the fact that we, the people writing the code, and you, the person
reading the code, remembers that the second argument (2) means the number of decimal
places it should round to. But, we can also specify the argument using its name, like this (see
Figure 5.5):
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3.1415

Arguments:

Return value:

Name:

round

round to
given decimal
places

3.14

2

Figure 5.3: round with optional arguments specifying number of digits
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# Put in 3.1415, and the number of digits to round to (2).
# Use the name of the number-of-decimals argument for clarity:
np.round(3.1415, decimals=2)

np.float64(3.14)

Here Python sees the first argument, as before, and assumes that it is the number we want
to round. Then it sees the second, named argument — decimals=2 — and knows, from the
name, that we mean this to be the number of decimals to round to.

In fact, we could even specify both arguments by name, like this:

# Put in 3.1415, and the number of digits to round to (2).
np.round(a=3.1415, decimals=2)

np.float64(3.14)

We don’t usually name both arguments for round, as we have above, because it is so obvious
that the first argument is the thing we want to round, and so naming the argument does not
make it any more clear what the code is doing. But — as so often in programming — whether
to use the names, or let Python work out which argument is which by position, is a judgment
call. The judgment you are making is about the way to write the code to be most clear for
your reader, where your most important reader may be you, coming back to the code in a
week or a year.

How do you know what names to use for the function arguments?

You can find the names of the function arguments in the help for the function, either
online, or in the notebook interface. For example, to get the help for np.round, including
the argument names, you could make a new cell, and type np.round?, then execute the
cell by pressing Shift-Enter. This will show the help for the function in the notebook
interface.

5.9 Ranges

Now let us return to the variable some_numbers that we created above:
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3.1415

Arguments:

Return value:

Name:

round

round to
given decimal
places

3.14

2
x = digits =

Figure 5.4: The round function with argument names
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3.1415

Arguments:

Return value:

Name:

round

round to
given decimal
places

3.14

2
a = decimals =

Figure 5.5: The np.round function with argument names
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# Make an array of numbers, store with the name "some_numbers".
some_numbers = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# Show the value of "some_numbers"
some_numbers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In fact, we often need to do this: generate a sequence or range of integers, such as 0 through
9.

Pick a number from 1 through 5

Ranges can be confusing in normal speech because it is not always clear whether they
include their beginning and end. For example, if someone says “pick a number between
1 and 5”, do they mean to pick from all of the numbers, including the first and last (any
of 1 or 2 or 3 or 4 or 5)? Or do they mean only the numbers that are between 1 and 5
(so 2 or 3 or 4)? Or do they mean all the numbers up to, but not including 5 (so 1 or 2
or 3 or 4)?
To avoid this confusion, we will nearly always use “from” and “through” in ranges, mean-
ing that we do include both the start and the end number. For example, if we say “pick
a number from 1 through 5” we mean one of 1 or 2 or 3 or 4 or 5.

Creating ranges of numbers is so common that Python has a standard Numpy function
np.arange to do that.

# An array containing all the numbers from 0 through 9.
some_numbers = np.arange(0, 10)
some_numbers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Notice that we send np.arange the arguments 0 and 10. The first argument, here 0, is the
start value. The second argument, here 10, is the stop value. Numpy (in the arange function)
understands this to mean: start at 0 (the start value) and go up to but do not include 10 (the
stop value).

You can therefore read np.arange(0, 10) as “the sequence of integers starting at 0, up to,
but not including 10”.

Like np.round, the arguments to np.arange also have names, so, we could also write:
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# An array containing all the numbers from 0 through 9.
# Now using named arguments.
some_numbers = np.arange(start=0, stop=10)
some_numbers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

So far, we have sent arange two arguments, but we can also send just one argument, like
this:

# An array containing all the numbers from 0 through 9.
some_integers = np.arange(10)
some_integers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

When we sent arange a single argument, like this, arange understands this to mean we have
sent just the stop value, and that is should assume a start value of 0.

Again, if we wanted, we could send this argument by name:

# An array containing all the numbers from 0 through 9.
# Specify the stop value by explicit name, for clarity.
some_integers = np.arange(stop=10)
some_integers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Here are some more examples of np.arange:

# All the integers starting at 10, up to, but not including 15.
# In other words, 10 through 14.
np.arange(10, 15)

array([10, 11, 12, 13, 14])

# Here we are only sending one value (7). np.arange understands this to be
# the stop value, and assumes 0 as the start value.
# In other words, 0 through 6
np.arange(7)

array([0, 1, 2, 3, 4, 5, 6])
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5.10 range in Python

So far you have seen ranges of integers using np.arange. The np. prefix refers to the fact
that np.arange is a function from the Numpy module (library). The a in arange signals that
the result np.arange returns is an array:

arr = np.arange(7)
# Show the result
arr

array([0, 1, 2, 3, 4, 5, 6])

# Show what type of thing this is.
type(arr)

<class 'numpy.ndarray'>

We do often use np.arange to get a range of integers in a convenient array format, but Python
has another way of getting a range of integers — the range function.

The range function is very similar to np.arange, but it is not part of Numpy — it is basic
function in Python — and it does not return an array of numbers, it returns something else.
Here we ask for a range from 0 through 6 (0 up to, but not including 7):

# Notice no `np.` before `range`.
r = range(7)
r

range(0, 7)

Notice that the thing that came back is something that represents or stands in for the number
0 through 6. It is not an array, but a specific type of thing called — a range:

type(r)

<class 'range'>
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The range above is a container for the numbers 0 through 6. We can get the numbers out of
the container in many different ways, but one of them is to convert this container to an array,
using the np.array function. The np.array function takes the thing we pass it, and makes it
into an array. When we apply np.array to r above, we get the numbers that r contains:

# Get the numbers from the range `r`, convert to an array.
a_from_r = np.array(r)
# Show the result
a_from_r

array([0, 1, 2, 3, 4, 5, 6])

The range function has the same start and stop arguments that np.arange does, and with
the same meaning:

# 3 up to, not including 12.
# (3 through 11)
r_2 = range(3, 12)
r_2

range(3, 12)

np.array(r_2)

array([ 3, 4, 5, 6, 7, 8, 9, 10, 11])

You may reasonably ask — why do I need this range thing, if I have the very similar
np.arange? The answer is — you don’t need range, and you can always use np.arange
where you would use range, but for reasons we will go into later (Section 6.6.3), range is a
good option when we want to represent a sequence of numbers as input to a for loop. We
cover for loops in more detail in Section 6.6.2, but for now, the only thing to remember is
that range and np.arange are both ways of expressing sequential ranges of integers.

5.11 Choosing values at random

We can use the rnd.choice function to select a single value at random from the sequence of
numbers in some_integers.
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More on rnd.choice

The rnd.choice function will be a fundamental tool for taking many kinds of samples,
and we cover it in more detail in Chapter 7.

# Select an integer from the choices in some_integers.
my_integer = rnd.choice(some_integers)
# Show the value that results.
my_integer

np.int64(5)

Like np.round (above), rnd.choice is a function.

Note 6: Functions and methods

Actually, to be precise, we should call rnd.choice a method. A method is a function
attached to a value. In this case the function choice is attached to the value rnd. That’s
not an important distinction for us at the moment, so please forgive our strategic impre-
cision, and let us continue to say that rnd.choice is a function.

As you remember, a function is a named production line. In our case, the production line has
the name rnd.choice.

We sent rnd.choice. a value to work on — an argument. In this case, the argument was the
value of some_integers.

Figure 5.6 is a diagram illustrating an example run of the rnd.choice function (production
line).

Here is the same code again, with new comments.

# Send the value of "some_integers" to rnd.choice
# some_integers is the *argument*.
# Put the *return* value from the function into "my_number".
my_number = rnd.choice(some_integers)
# Show the value that results.
my_number

np.int64(4)
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[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]Argument:

Example return value:

Name:

rnd.choice

select element
at random ...

8
Figure 5.6: Example run of the rnd.choice function
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5.12 Creating arrays with sampling

In the code above, we asked Python to select a single number at random — because that is
what rnd.choice does by default.

In fact, the people who wrote rnd.choice, wrote it to be flexible in the work that it can do.
In particular, we can tell rnd.choice to select any number of values at random, by adding a
new argument to the function.

In our case, we would like Numpy to select 17 numbers at random from the sequence of
some_integers.

To do this, we add an argument to the function that tells it how many numbers we want it to
select.

# Get 17 values from the *some_integers* array.
# Store the 17 numbers with the name "a"
a = rnd.choice(some_integers, 17)
# Show the result.
a

array([4, 5, 9, 8, 2, 9, 1, 5, 8, 2, 1, 8, 2, 6, 6, 5, 0])

As you can see, the function sent back (returned) 17 numbers. Because it is sending back more
than one number, the thing it sends back is an array, where the array has 17 elements.

5.12.1 sum — adding all the values

Bear with us for a short diversion. You will see why we made this diversion soon.

NumPy has a function np.sum that will add up all the numbers in an array.

You can see the contents of a above.

np.sum adds all the numbers in the array together, to give the sum of the array. The sum is
just the result of adding all the values in the array. Put another way, it is the result of adding
the second element to the first, then adding third element to the result, and the fourth element
to the result, and so on.

np.sum(a)

np.int64(81)
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5.13 Counting results

We now have the code to do the equivalent of throwing 17 ten-sided dice. This is the basis for
one simulated trial in the world of Saint Hypothetical General.

Our next job is to get the code to count the number of numbers that are not zero in the array
a. That will give us the number of patients who were cured in simulated trial.

Another way of asking this question, is to ask how many elements in a are greater than zero.

5.13.1 Comparison

To ask whether a number is greater than zero, we use comparison. Here is a greater than zero
comparison on a single number:

n = 5
# Is the value of n greater than 0?
# Show the result of the comparison.
n > 0

True

> is a comparison — it asks a question about the numbers either side of it. In this case > is
asking the question “is the value of n (on the left hand side) greater than 0 (on the right hand
side)?” The value of n is 5, so the question becomes, “is 5 greater than 0?” The answer is Yes,
and Python represents this Yes answer as the value True.

In contrast, the comparison below boils down to “is 0 greater than 0?”, to which the answer
is No, and Python represents this as False.

p = 0
# Is the value of p greater than 0?
# Show the result of the comparison.
p > 0

False

So far you have seen the results of comparison on a single number. Now say we do the same
comparison on an array. For example, say we ask the question “is the value of a greater than
0”? Remember, a is an array containing 17 values. We are comparing 17 values to one value
(0). What answer do you think NumPy will give? You may want to think a little about this
before you read on.
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As a reminder, here is the current value for a:

# Show the current value for "a"
a

array([4, 5, 9, 8, 2, 9, 1, 5, 8, 2, 1, 8, 2, 6, 6, 5, 0])

Now you have had some time to think, here is what happens:

# Is the value of "a" greater than 0
# Show the result of the comparison.
a > 0

array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, False])

There are 17 values in a, so the comparison to 0 means there are 17 comparisons, and 17
answers. NumPy therefore returns an array of 17 elements, containing these 17 answers. The
first answer is the answer to the question “is the value of the first element of a greater than
0”, and the second is the answer to “is the value of the second element of a greater than 0”.

Let us store the result of this comparison to work on:

# Is the value of "a" greater than 0
# Store as another array "q".
q = a > 0
# Show the value of r
q

array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, False])

5.14 Counting True values with sum

Notice above that there is one True element in q for every element in a that was greater than
0. It only remains to count the number of True values in q, to get the count of patients in our
simulated trial who were cured.

We can use the NumPy function np.sum to count the number of True elements in an array.
As you can see above, np.sum adds up all the elements in an array, to give a single number.
This will work as we want for the q array, because Python counts False as equal to 0 and
True as equal to 1:
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# Question: is False equal to 0?
# Answer - Yes! (True)
False == 0

True

# Question: is True equal to 1?
# Answer - Yes! (True)
True == 1

True

Therefore, the function sum, when applied to an array of True and False values, will count
the number of True values in the array.

To see this in action we can make a new array of True and False values, and try using np.sum
on the new array.

# An array containing three True values and two False values.
trues_and_falses = np.array([True, False, True, True, False])
# Show the new array.
trues_and_falses

array([ True, False, True, True, False])

The sum operation adds all the elements in the array. Because True counts as 1, and False
counts as 0, adding all the elements in trues_and_falses is the same as adding up the values
1 + 0 + 1 + 1 + 0, to give 3.

We can apply the same operation on q to count the number of True values.

# Count the number of True values in "q"
# This is the same as the number of values in "a" that are greater than 0.
b = np.sum(q)
# Show the result
b

np.int64(16)
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5.15 The procedure for one simulated trial

We now have the whole procedure for one simulated trial. We can put the whole procedure in
one cell:

# Procedure for one simulated trial

# Get 17 values from the *some_integers* array.
# Store the 17 numbers with the name "a"
a = rnd.choice(some_integers, 17)
# Is the value of "a" greater than 0
q = a > 0
# Count the number of True values in "q"
b = np.sum(q)
# Show the result of this simulated trial.
b

np.int64(17)

5.16 Repeating the trial

Now we know how to do one simulated trial, we could just keep running the cell above, and
writing down the result each time. Once we had run the cell 100 times, we would have 100
counts. Then we could look at the 100 counts to see how many were equal to 17 (all 17
simulated patients cured on that trial). At least that would be much faster than rolling 17
dice 100 times, but we would also like the computer to automate the process of repeating the
trial, and keeping track of the counts.

Please forgive us as we race ahead again, as we did in the last chapter. As in the last chapter,
we will use a results array called z to store the count for each trial. As in the last chapter, we
will use a for loop to repeat the trial procedure many times. As in the last chapter, we will
not explain the counts array of the for loop in any detail, because we are going to cover those
in the next chapter.

Let us now imagine that we want to do 100 simulated trials at Saint Hypothetical General.
This will give us 100 counts. We will want to store the count for each trial.

To do this, we make an array called z to hold the 100 counts. We have called the array z, but
we could have called it anything we liked, such as counts or results or cecilia.
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# An array to hold the 100 count values.
# Later, we will fill this in with real count values from simulated trials.
z = np.zeros(100)

Next we use a for loop to repeat the single trial procedure.

Notice that the single trial procedure, inside this for loop, is the same as the single trial
procedure above — the only two differences are:

• The trial procedure is inside the loop, and
• We are storing the count for each trial as we go.

We will go into more detail on how this works in the next chapter.

# Procedure for 100 simulated trials.

# An array to store the counts for each trial.
z = np.zeros(100)

# Repeat the trial procedure 100 times.
for i in np.arange(100):

# Get 17 values from the *some_integers* array.
# Store the 17 numbers with the name "a".
a = rnd.choice(some_integers, 17)
# Is the value of "a" greater than 0.
q = a > 0
# Count the number of True values in "q".
b = np.sum(q)
# Store the result at the next position in the "z" array.
z[i] = b
# Now go back and do the next trial until finished.

# Show the result of all 100 trials.
z

array([16., 15., 15., 16., 16., 12., 15., 11., 16., 13., 12., 16., 15.,
16., 15., 16., 14., 15., 14., 15., 15., 15., 14., 15., 17., 15.,
14., 15., 16., 17., 15., 17., 16., 17., 14., 16., 15., 15., 15.,
17., 17., 13., 16., 13., 16., 14., 14., 15., 15., 15., 14., 15.,
15., 15., 17., 16., 17., 14., 15., 14., 16., 16., 15., 15., 16.,
15., 15., 16., 17., 15., 17., 15., 10., 15., 15., 14., 14., 13.,
16., 14., 17., 17., 16., 14., 15., 16., 17., 14., 15., 15., 16.,
16., 17., 16., 13., 15., 15., 14., 17., 15.])
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Finally, we need to count how many of the trials results we stored in z gave a “cured” count
of 17.

We can ask the question whether a single number is equal to 17 using the double equals
comparison: ==.

s = 17
# Is the value of s equal to 17?
# Show the result of the comparison.
s == 17

True

Note

5.17 Single and double equals
Notice that the double equals == means something entirely different to Python than the
single equals =. In the code above, Python reads s = 17 to mean “Set the variable s to
have the value 17”. In technical terms the single equals is called an assignment operator,
because it means assign the value 17 to the variable s.
The code s == 17 has a completely different meaning.
It means “give True if the value in s is equal to 17, and False otherwise”. The == is
a comparison operator — it is for comparing two values — here the value in s and the
value 17. This comparison, like all comparisons, returns an answer that is either True or
False. In our case s has the value 17, so the comparison becomes 17 == 17, meaning
“is 17 equal to 17?”, to which the answer is “Yes”, and Python sends back True.

We can ask this question of all 100 counts by asking the question: is the array z equal to 17,
like this:

# Is the value of z equal to 17?
were_cured = z == 17
# Show the result of the comparison.
were_cured

array([False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, True, False, False,
False, False, True, False, True, False, True, False, False,
False, False, False, True, True, False, False, False, False,
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False, False, False, False, False, False, False, False, False,
True, False, True, False, False, False, False, False, False,

False, False, False, False, False, True, False, True, False,
False, False, False, False, False, False, False, False, True,
True, False, False, False, False, True, False, False, False,

False, False, True, False, False, False, False, False, True,
False])

Finally we use sum to count the number of True values in the were_cured array, to give the
number of trials where all 17 patients were cured.

# Count the number of True values in "were_cured"
# This is the same as the number of values in "z" that are equal to 17.
n_all_cured = np.sum(were_cured)
# Show the result of the comparison.
n_all_cured

np.int64(15)

n_all_cured is the number of simulated trials for which all patients were cured. It only
remains to get the proportion of trials for which this was true, and to do this, we divide by
the number of trials.

# Proportion of trials where all patients were cured.
p = n_all_cured / 100
# Show the result
p

np.float64(0.15)

From this experiment, we see that there is roughly a one-in-six chance that all 17 patients are
cured when using a 90% effective treatment.

5.18 What have we learned from Saint Hypothetical?

We started with a question about the results of the NCI trial on the new drug. The question
was — was the result of their trial — 17 out of 17 patients cured — surprising.
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Then, for reasons we did not explain in detail, we changed tack, and asked the same question
about a hypothetical set of 17 patients getting the standard treatment in Saint Hypothetical
General.

That Hypothetical question turns out to be fairly easy to answer, because we can use simulation
to estimate the chances that 17 out of 17 patients would be cured in such a hypothetical trial,
on the assumption that each patient has a 90% chance of being cured with the standard
treatment.

The answer for Saint Hypothetical General was — we would be somewhat surprised, but not
astonished. We only get 17 out of 17 patients cured about one time in six.

Now let us return to the NCI trial. Should the trial authors be surprised by their results? If
they assumed that their new treatment was exactly as effective as the standard treatment, the
result of the trial is a bit unusual, just by chance. It is up to us to decide whether the result
is unusual enough to make us think that the actual NCI treatment might in fact have been
more effective than the standard treatment.

You will see this move again and again as we go through the book.

• We take something that really happened — in this case the 17 out of 17 patients cured.
• Then we imagine a hypothetical world in which the results only depend on chance.
• We do simulations in that hypothetical world to see how often we get a result like the

one that happened in the real world.
• If the real world result (17 out of 17) is an unusual, surprising result in the simulations

from the hypothetical world, we take that as evidence that the real world result might
not be due to chance alone.

We have just described the main idea in statistical inference. If that all seems strange and
backwards to you, do not worry, we will go over that idea many times in this book. It is not a
simple idea to grasp in one go. We hope you will find that, as you do more simulations, and
think of more hypothetical worlds, the idea will start to make more sense. Later, we will start
to think about asking other questions about probability and chance in the real world.

5.19 Conclusions

Can you see how each of the operations that the computer carries out are analogous to the
operations that you yourself executed when you solved this problem using 10-sided dice? This
is exactly the procedure that we will use to solve every problem in probability and statistics
that we must deal with. Either we will use a device such as coins or dice, or a random number
table as an analogy for the physical process we are interested in (patients being cured, in this
case), or we will simulate the analogy on the computer using the Python program above.
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The program above may not seem simple at first glance, but we think you will find, over
the course of this book, that these programs become much simpler to understand than the
older conventional approach to such problems that has routinely been taught to students for
decades.
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6 More resampling with code

Chapter 5 introduced a problem in probability, that was also a problem in statistics. We asked
how surprised we should be at the results of a trial of a new cancer treatment regime.

Here we study another urgent problem in the real world - racial bias and the death penalty.

6.1 A question of life and death

This example comes from the excellent Berkeley introduction to data science (Ani Adhikari
and Wagner 2021).

Robert Swain was a young black man who was sentenced to death in the early 60s. Swain’s
trial was held in Talladega County, Alabama. At the time, 26% of the eligible jurors in that
county were black, but every member of Swain’s jury was white. Swain and his legal team
appealed to the Alabama Supreme Court, and then to the US Supreme Court, arguing that
there was racial bias in the jury selection. They noted that there had been no black jurors in
Talladega county since 1950, even though they made up about a quarter of the eligible pool
of jurors. The US Supreme Court rejected this argument, in a 6 to 3 opinion, writing that
“The overall percentage disparity has been small and reflects no studied attempt to include or
exclude a specified number of Negros.”.

Swain’s team presented a variety of evidence on bias in jury selection, but here we will look at
the obvious and apparently surprising fact that Swain’s jury was entirely white. The Supreme
Court decided that the “disparity” between selection of white and black jurors “has been
small” — but how would they, and how would we, make a rational decision about whether
this disparity really was “small”?

You might reasonably be worried about the result of this decision for Robert Swain. In fact
his death sentence was invalidated by a later, unrelated decision and he served a long prison
sentence instead. In 1986, the Supreme Court overturned the precedent set by Swain’s case,
in Batson v. Kentucky, 476 U.S. 79.
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6.2 A small disparity and a hypothetical world

To answer the question that the Supreme Court asked, we return to the method we used in
the last chapter.

Let us imagine a hypothetical world, in which each individual black or white person had an
equal chance of being selected for the jury. Call this world Hypothetical County, Alabama.

Just as in 1960’s Talladega County, 26% of eligible jurors in Hypothetical County are black.
Hypothetical County jury selection has no bias against black people, so we expect around 26%
of the jury to be black. 0.26 * 12 = 3.12, so we expect that, on average, just over 3 out of 12
jurors in a Hypothetical County jury will be black. But, if we select each juror at random from
the population, that means that, sometimes, by chance, we will have fewer than 3 black jurors,
and sometimes will have more than 3 black jurors. And, by chance, sometimes we will have
no black jurors. But, if the jurors really are selected at random, how often would we expect
this to happen — that there are no black jurors? We would like to estimate the probability
that we will get no black jurors. If that probability is small, then we have some evidence that
the disparity in selection between black and white jurors, was not “small”.

What is the probability of an all white jury being randomly selected out of a population having
26% black people?

6.3 Designing the experiment

Before we start, we need to figure out three things:

1. What do we mean by one trial?
2. What is the outcome of interest from the trial?
3. How do we simulate one trial?

We then take three steps to calculate the desired probability:

1. Repeat the simulated trial procedure N times.
2. Count M, the number of trials with an outcome that matches the outcome we are inter-

ested in.
3. Calculate the proportion, M/N. This is an estimate of the probability in question.

For this problem, our task is made a little easier by the fact that our trial (in the resampling
sense) is a simulated trial (in the legal sense). One trial requires 12 simulated jurors, each
labeled by race (white or black).

The outcome we are interested in is the number of black jurors.

Now comes the harder part. How do we simulate one trial?
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6.3.1 One trial

One trial requires 12 jurors, and we are interested only in the race of each juror. In Hypothetical
County, where selection by race is entirely random, each juror has a 26% chance of being
black.

We need a way of simulating a 26% chance.

One way of doing this is by getting a random number from 0 through 99 (inclusive). There
are 100 numbers in the range 0 through 99 (inclusive).

We will arbitrarily say that the juror is white if the random number is in the range from 0
through 73. 74 of the 100 numbers are in this range, so the juror has a 74/100 = 74% chance
of getting the label “white”. We will say the juror is black if the random number is in the
range 74 though 99. There are 26 such numbers, so the juror has a 26% chance of getting the
label “black”.

Next we need a way of getting a random number in the range 0 through 99. This is an easy
job for the computer, but if we had to do this with a physical device, we could get a single
number by throwing two 10-sided dice, say a blue die and a green die. The face of the blue
die will be the 10s digit, and the green face will be the ones digit. So, if the blue die comes up
with 8 and the green die has 4, then the random number is 84.

We could then simulate 12 jurors by repeating this process 12 times, each time writing down
“white” if the number is from 0 through 74, and “black” otherwise. The trial outcome is the
number of times we wrote “black” for these 12 simulated jurors.

6.3.2 Using code to simulate a trial

We use the same logic to simulate a trial with the computer. A little code makes the job easier,
because we can ask Python to give us 12 random numbers from 0 through 99, and to count
how many of these numbers are in the range from 75 through 99. Numbers in the range from
75 through 99 correspond to black jurors.

6.3.3 Random numbers from 0 through 99

We can now use NumPy and the random number functions from the last chapter to get 12
random numbers from 0 through 99.

# Import the Numpy library, rename as "np"
import numpy as np

# Ask Numpy for a random number generator.
rnd = np.random.default_rng()
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# All the integers from 0 up to, but not including 100.
zero_thru_99 = np.arange(100)

# Get 12 random numbers from 0 through 99
a = rnd.choice(zero_thru_99, size=12)

# Show the result
a

array([59, 43, 45, 58, 95, 89, 23, 99, 17, 51, 85, 23])

6.3.3.1 Counting the jurors

We use comparison and np.sum to count how many numbers are greater than 74, and therefore,
in the range from 75 through 99:

# How many numbers are greater than 74?
b = np.sum(a > 74)
# Show the result
b

np.int64(4)

6.3.3.2 A single simulated trial

We assemble the pieces from the last few sections to make a cell that simulates a single trial:

rnd = np.random.default_rng()
zero_thru_99 = np.arange(100)

# Get 12 random numbers from 0 through 99
a = rnd.choice(zero_thru_99, size=12)

# How many numbers are greater than 74?
b = np.sum(a > 74)

# Show the result
b

np.int64(4)
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6.4 Three simulation steps

Now we come back to the details of how we:

1. Repeat the simulated trial many times;
2. record the results for each trial;
3. calculate the required proportion as an estimate of the probability we seek.

Repeating the trial many times is the job of the for loop, and we will come to that soon.

In order to record the results, we will store each trial result in an array.

6.4.1 More on arrays

Since we will be working with arrays a lot, it is worth knowing more about them.

A Numpy array is a container that stores many elements of the same type. You have already
seen, in Chapter 2, how we can create an array from a sequence of numbers using the np.array
function.

# Make an array of numbers, store with the name "some_numbers".
some_numbers = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# Show the value of "some_numbers"
some_numbers

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Another way that we can create arrays is to use the np.zeros function to make a new array
where all the elements are 0.

# Make a new array containing 5 zeros.
# store with the name "z".
z = np.zeros(5)
# Show the value of "z"
z

array([0., 0., 0., 0., 0.])

Notice the argument 5 to the np.zeros function. This tells the function how many zeros we
want in the array that the function will return.
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6.5 Array length

The are various useful things we can do with this array container. One is to ask how many
elements there are in the array container. We can use the len function to calculate the number
of elements in an array:

# Show the number of elements in "z"
len(z)

5

6.6 Indexing into arrays with integers

Another thing we can do with arrays is set the value for a particular element. To do this, we
use square brackets following the array value, on the left hand side of the equals sign, like
this:

# Set the value of the *first* element in the array.
z[0] = 99
# Show the new contents of the array.
z

array([99., 0., 0., 0., 0.])

Read the first line of code as “the element at position 0 gets a value of 99”.

Notice that the position number of the first element in the array is 0, and the position number
of the second element is 1. Think of the position as an offset from the beginning of the array.
The first element is at the beginning of the array, and so it is at offset (position) 0. This can
be a little difficult to get used to at first, but you will find that thinking of the positions of
offsets in this way soon starts to come naturally, and later you will also find that it helps you
to avoid some common mistakes when using positions for getting and setting values.

For practice, let us also set the value of the third element in the array:

# Set the value of the *third* element in the array.
z[2] = 99
# Show the new contents of the array.
z

array([99., 0., 99., 0., 0.])
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Read the first code line above as as “set the value at position 2 in the array to have the value
99”.

We can also get the value of the element at a given position, using the same square-bracket
notation:

# Get the value of the *first* element in the array.
# Store the value with name "v"
v = z[0]
# Show the value we got
v

np.float64(99.0)

Read the first code line here as “v gets the value at position 0 in the array”.

Using square brackets to get and set element values is called indexing into the array.

6.6.1 Repeating trials

As a preview, let us now imagine that we want to do 50 simulated trials of Robert Swain’s jury
in Hypothetical County. We will want to store the count for each trial, to give 50 counts.

In order to do this, we make an array to hold the 50 counts. Call this array z.

# An array to hold the 50 count values.
z = np.zeros(50)

We could run a single trial to get a single simulated count. Here we just repeat the code cell you
saw above. Notice that we can get a different result each time we run this code, because the
numbers in a are random choices from the range 0 through 99, and different random numbers
will give different counts.

rnd = np.random.default_rng()
zero_thru_99 = np.arange(100)
# Get 12 random numbers from 0 through 99
a = rnd.choice(zero_thru_99, size=12)
# How many numbers are greater than 74?
b = np.sum(a > 74)
# Show the result
b
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np.int64(4)

Now we have the result of a single trial, we can store it as the first number in the z array:

# Store the single trial count as the first value in the "z" array.
z[0] = b
# Show all the values in the "z" array.
z

array([4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Of course we could just keep doing this: run the cell corresponding to a trial, above, to get a
new count, and then store it at the next position in the z array. For example, we could store
the counts for the first three trials with:

# First trial
a = rnd.choice(zero_thru_99, size=12)
b = np.sum(a > 74)
# Store the result at the first position in z
# Remember, the first position is offset 0.
z[0] = b
# Second trial
a = rnd.choice(zero_thru_99, size=12)
b = np.sum(a > 74)
# Store the result at the second position in z
z[1] = b
# Third trial
a = rnd.choice(zero_thru_99, size=12)
b = np.sum(a > 74)
# Store the result at the third position in z
z[2] = b

# And so on ...

This would get terribly long and boring to type for 50 trials. Luckily computer code is very
good at repeating the same procedure many times. For example, Python can do this using a
for loop. You have already seen a preview of the for loop in Chapter 2. Here we dive into
for loops in more depth.
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6.6.2 For-loops in Python

A for-loop is a way of asking Python to:

• Take a sequence of things, one by one, and
• Do the same task on each one.

We often use this idea when we are trying to explain a repeating procedure. For example,
imagine we wanted to explain what the supermarket checkout person does for the items in
your shopping basket. You might say that they do this:

For each item of shopping in your basket, they take the item off the conveyor belt,
scan it, and put it on the other side of the till.

You could also break this description up into bullet points with indentation, to say the same
thing:

• For each item from your shopping basket, they:

– Take the item off the conveyor belt.
– Scan the item.
– Put it on the other side of the till.

Notice the logic; the checkout person is repeating the same procedure for each of a series of
items.

This is the logic of the for loop in Python. The procedure that Python repeats is called the
body of the for loop. In the example of the checkout person above, the repeating procedure
is:

• Take the item off the conveyor belt.
• Scan the item.
• Put it on the other side of the till.

Now imagine we wanted to use Python to print out the year of birth for each of the authors
for the third edition of this book:

Author Year of birth
Julian Lincoln Simon 1932
Matthew Brett 1964
Stéfan van der Walt 1980

We want to see this output:
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Author birth year is 1932
Author birth year is 1964
Author birth year is 1980

Of course, we could just ask Python to print out these exact lines, like this:

print('Author birth year is 1932')

Author birth year is 1932

print('Author birth year is 1964')

Author birth year is 1964

print('Author birth year is 1980')

Author birth year is 1980

We might instead notice that we are repeating the same procedure for each of the three birth
years, and decide to do the same thing using a for loop:

author_birth_years = np.array([1932, 1964, 1980])

# For each birth year
for birth_year in author_birth_years:

# Repeat this procedure ...
print('Author birth year is', birth_year)

Author birth year is 1932
Author birth year is 1964
Author birth year is 1980

The for loop starts with a line where we tell it what items we want to repeat the procedure
for:

for birth_year in author_birth_years:
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This initial line of the for loop ends with a colon.

The next thing in the for loop is the procedure Python should follow for each item. Python
knows that the following lines are the procedure it should repeat, because the lines are indented.
The indented lines are the body of the for loop.

The initial line of the for loop above tells Python that it should take each item in
author_birth_years, one by one — first 1932, then 1964, then 1980. For each of these
numbers it will:

• Put the number into the variable birth_year, then
• Run the indented code .

Just as the person at the supermarket checkout takes each item in turn, for each iteration (re-
peat) of the for loop, birth_year gets a new value from the sequence in author_birth_years.
birth_year is called the loop variable, because it is the variable that gets a new value each
time we begin a new iteration of the for loop procedure. As for any variable in Python, we
can call our loop variable anything we like. We used birth_year here, but we could have used
y or year or some other name.

Now you know what the for loop is doing, you can see that the for loop above is equivalent
to the following code:

birth_year = 1932 # Set the loop variable to contain the first value.
print('Author birth year is', birth_year) # Use it.

Author birth year is 1932

birth_year = 1964 # Set the loop variable to contain the next value.
print('Author birth year is', birth_year) # Use the second value.

Author birth year is 1964

birth_year = 1980
print('Author birth year is', birth_year)

Author birth year is 1980

Writing the steps in the for loop out like this is called unrolling the loop. It can be a useful
exercise to do this when you come across a for loop, in order to work through the logic of
the loop. For example, you may want to write out the unrolled equivalent of the first couple
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of iterations, to see what the loop variable will be, and what will happen in the body of the
loop.

We often use for loops with ranges (see Section 5.9). Here we use a loop to print out the
numbers 0 through 3:

for n in np.arange(4):
print('The loop variable n is', n)

The loop variable n is 0
The loop variable n is 1
The loop variable n is 2
The loop variable n is 3

Notice that the range ended at (the number before) 4, and that means we repeat the loop
body 4 times. We can also use the loop variable value from the range as an index, to get or
set the first, second, etc values from an array.

For example, maybe we would like to show the author position and the author year of birth.

Remember our author birth years:

author_birth_years

array([1932, 1964, 1980])

We can get (for example) the second author birth year with:

author_birth_years[1]

np.int64(1964)

Remember, for Python, the first element is position 0, so the second element is position 1.

Using the combination of looping over a range, and array indexing, we can print out the author
position and the author birth year:

for n in np.arange(3):
year = author_birth_years[n]
print('Birth year of author position', n, 'is', year)
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Birth year of author position 0 is 1932
Birth year of author position 1 is 1964
Birth year of author position 2 is 1980

Again, remember Python considers 0 as the first position.

Just for practice, let us unroll the three iterations through this for loop, to remind ourselves
what the code is doing:

# Unrolling the for loop.
n = 0
year = author_birth_years[n] # Will be 1932
print('Birth year of author position', n, 'is', year)

Birth year of author position 0 is 1932

n = 1
year = author_birth_years[n] # Will be 1964
print('Birth year of author position', n, 'is', year)

Birth year of author position 1 is 1964

n = 2
year = author_birth_years[n] # Will be 1980
print('Birth year of author position', n, 'is', year)

Birth year of author position 2 is 1980

6.6.3 range in Python for loops

So far we have used np.arange to give us the sequence of integers that we feed into the for
loop. But — as you saw in Section 5.10 — we can also get a range of numbers from Python’s
range function. range is a common and useful alternative way to provide a range of numbers
to a for loop.

You have just seen how we would use np.arange to send the numbers 0, 1, 2, and 3 to a for
loop, in the example above, repeated here:

for n in np.arange(3):
year = author_birth_years[n]
print('Birth year of author position', n, 'is', year)
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Birth year of author position 0 is 1932
Birth year of author position 1 is 1964
Birth year of author position 2 is 1980

We could also use range instead of np.arange to do the same task:

for n in range(3):
year = author_birth_years[n]
print('Birth year of author position', n, 'is', year)

Birth year of author position 0 is 1932
Birth year of author position 1 is 1964
Birth year of author position 2 is 1980

In fact, you will see this pattern throughout the book, where we use for statements like
for value in range(10000): to ask Python to put each number in the range 0 up to (not
including) 10000 into the variable value, and then do something in the body of the loop. Just
to be clear, we could always, and almost as easily, write for value in np.arange(10000):
to do the same task. However, we generally prefer range in our Python for loops, because it
is just a little less typing (without the np.a of np.arange), and because it is a more common
pattern in standard Python code.1

6.6.4 Putting it all together

Here is the code we worked out above, to implement a single trial:

rnd = np.random.default_rng()
zero_thru_99 = np.arange(100)
# Get 12 random numbers from 0 through 99
a = rnd.choice(zero_thru_99, size=12)
# How many numbers are greater than 74?
b = np.sum(a > 74)

1Actually, there is a reason why many Python programmers prefer range to np.arange in the headers for their
for loops. range is a very efficient container, in that it doesn’t need to take up all the memory required to
create the full array, it just needs to keep track of the number to give you next. For example, consider for
i in np.arange(10000000): — in this case Python has to make an array with 10,000,000 elements,
and then, from that array, it passes each value one by one to the for loop. On the other hand, for i in
range(10000000): will do the job just as well, passing the same sequence of 0 through 9,999,999 to i, one
by one, but range(10000000) never has to make the whole 10,000,000 element array — it just needs to keep
track of which number to give up next. Therefore range is very quick, and very efficient in memory. This
doesn’t have any great practical impact for the arrays we are using here, typically of 10,0000 elements or so,
but it can be important for larger arrays.
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# Show the result
b

np.int64(4)

We found that we could use arrays to store the results of these trials, and that we could use
for loops to repeat the same procedure many times.

Now we can put these parts together to do 50 simulated trials:

# Procedure for 50 simulated trials.

# The Numpy random number generator.
rnd = np.random.default_rng()

# All the numbers from 0 through 99.
zero_through_99 = np.arange(100)

# An array to store the counts for each trial.
z = np.zeros(50)

# Repeat the trial procedure 50 times.
for i in np.arange(50):

# Get 12 random numbers from 0 through 99
a = rnd.choice(zero_through_99, size=12)
# How many numbers are greater than 74?
b = np.sum(a > 74)
# Store the result at the next position in the "z" array.
z[i] = b
# Now go back and do the next trial until finished.

# Show the result of all 50 trials.
z

array([4., 2., 3., 3., 4., 1., 4., 2., 7., 2., 3., 1., 6., 2., 5., 5., 3.,
1., 3., 4., 2., 2., 2., 4., 3., 4., 4., 2., 3., 3., 3., 1., 3., 1.,
2., 3., 2., 2., 3., 3., 6., 1., 3., 3., 4., 2., 4., 3., 4., 3.])

Finally, we need to count how many of the trials in z ended up with all-white juries. These
are the trials with a z (count) value of 0.

To do this, we can ask an array which elements match a certain condition. E.g.:
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x = np.array([2, 1, 3, 0])
y = x < 2
# Show the result
y

array([False, True, False, True])

We now use that same technique to ask, of each of the 50 counts, whether the array z is equal
to 0, like this:

# Is the value of z equal to 0?
all_white = z == 0
# Show the result of the comparison.
all_white

array([False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, False,
False, False, False, False, False])

We need to get the number of True values in all_white, to find how many simulated trials
gave all-white juries.

# Count the number of True values in "all_white"
# This is the same as the number of values in "z" that are equal to 0.
n_all_white = np.sum(all_white)
# Show the result of the comparison.
n_all_white

np.int64(0)

n_all_white is the number of simulated trials for which all the jury members were white. It
only remains to get the proportion of trials for which this was true, and to do this, we divide
by the number of trials.

# Proportion of trials where all jury members were white.
p = n_all_white / 50
# Show the result
p
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np.float64(0.0)

From this initial simulation, it seems there is around a 0% chance that a jury selected randomly
from the population, which was 26% black, would have no black jurors.

6.7 Many many trials

Our experiment above is only 50 simulated trials. The higher the number of trials, the more
confident we can be of our estimate for p — the proportion of trials where we get an all-white
jury.

It is no extra trouble for us to tell the computer to do a very large number of trials. For
example, we might want to run 10,000 trials instead of 50. All we have to do is to run the loop
10,000 times instead of 50 times. The computer has to do more work, but it is more than up
to the job.

Here is exactly the same code we ran above, but collected into one cell, and using 10,000 trials
instead of 50. We have left out the comments, to make the code more compact.

# Full simulation procedure, with 10,000 trials.
rnd = np.random.default_rng()
zero_through_99 = np.arange(100)
# 10,000 trials.
z = np.zeros(10000)
for i in np.arange(10000):

a = rnd.choice(zero_through_99, size=12)
b = np.sum(a > 74)
z[i] = b

all_white = z == 0
n_all_white = sum(all_white)
p = n_all_white / 10000
p

np.float64(0.0305)

We now have a new, more accurate estimate of the proportion of Hypothetical County juries
that are all white. The proportion is 0.03, and so 3%.

This proportion means that, for any one jury from Hypothetical County, there is a less than
one in 20 chance that the jury would be all white.
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As we will see in more detail later, we might consider using the results from this experiment in
Hypothetical County, to reflect on the result we saw in the real Talladega County. We might
conclude, for example, that there was likely some systematic difference between Hypothetical
County and Talledega County. Maybe the difference was that there was, in fact, some bias in
the jury selection in Talledega county, and that the Supreme Court was wrong to reject this.
You will hear more of this line of reasoning later in the book.

6.8 Conclusion

In this chapter we studied a real life-and-death question, on racial bias and the death penalty.
We continued our exploration of the ways we can use probability, and resampling, to draw
conclusions about real events. Along the way, we went into more detail on arrays in Python,
and for loops; two basic tools in resampling.

In the next chapter, we will work through some more problems in probability, to show how
we can use resampling, to answer questions about chance. We will add some more tools for
writing code in Python, to make your programs easier to write, read, and understand.
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7 Tools for samples and sampling

7.1 Introduction

Now you have some experience with Python, probabilities and resampling, it is time to intro-
duce some useful tools for our experiments and programs.

Note 7: Notebook: Sampling tools

• Download notebook
• Interact

7.2 Samples and labels and strings

Thus far we have used numbers such as 1 and 0 and 10 to represent the elements we are
sampling from. For example, in Chapter 6, we were simulating the chance of a particular juror
being black, given that 26% of the eligible jurors in the county were black. We used integers
for that task, where we started with all the integers from 0 through 99, and asked NumPy to
select values at random from those integers. When NumPy selected an integer from 0 through
25, we chose to label the resulting simulated juror as black — there are 26 integers in the
range 0 through 25, so there is a 26% chance that any one integer will be in that range. If the
integer was from 26 through 99, the simulated juror was white (there are 74 integers in the
range 26 through 99).

Here is the process of simulating a single juror, adapted from Section 6.3.3:

import numpy as np
# Ask Numpy for a random number generator.
rnd = np.random.default_rng()

# All the integers from 0 up to, but not including 100.
zero_thru_99 = np.arange(100)

# Get one random numbers from 0 through 99
a = rnd.choice(zero_thru_99)
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# Show the result
a

np.int64(59)

After that, we have to unpack our labeling of 0 through 25 as being “black” and 26 through
99 as being “white”. We might do that like this:

this_juror_is_black = a < 26
this_juror_is_black

np.False_

This all works as we want it to, but it’s just a little bit difficult to remember the coding (less
than 26 means “black”, greater than 25 means “white”). We had to use that coding because
we committed ourselves to using random numbers to simulate the outcomes.

However, Python can also store bits of text, called strings. Values that are bits of text can be
very useful because the text values can be memorable labels for the entities we are sampling
from, in our simulations.

Before we get to strings, let us consider the different types of value we have seen so far.

7.3 Types of values in Python

You have already come across the idea that Python values can be integers (positive or negative
whole numbers), like this:

v = 10
v

10

Here the variable v holds the value. We can see what type of value v holds by using the type
function:

type(v)

<class 'int'>
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Python can also have floating point values. These are values with a decimal point — numbers
that do not have to be integers, but also can be any value between the integers. These floating
point values are of type float:

f = 10.1
type(f)

<class 'float'>

7.3.1 Numpy arrays

You have also seen that Numpy contains another type, the array. An array is a value that
contains a sequence of values. For example, here is an array of integers:

arr = np.array([0, 10, 99, 4])
arr

array([ 0, 10, 99, 4])

Notice that this value arr is of type np.ndarray:

type(arr)

<class 'numpy.ndarray'>

The array has its own internal record of what type of values it holds. This is called the array
dtype:

arr.dtype

dtype('int64')

The array dtype records the type of value stored in the array. All values in the array must be
of this type, and all values in the array are therefore of the same type.

The array above contains integers, but we can also make arrays containing floating point
values:
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float_arr = np.array([0.1, 10.1, 99.0, 4.3])
float_arr

array([ 0.1, 10.1, 99. , 4.3])

float_arr.dtype

dtype('float64')

7.3.2 Lists

We have elided past another Python type, the list. In fact we have already used lists in making
arrays. For example, here we make an array with four values:

np.array([0, 10, 99, 4])

array([ 0, 10, 99, 4])

We could also write the statement above in two steps:

my_list = [0, 10, 99, 4]
np.array(my_list)

array([ 0, 10, 99, 4])

In the first statement — my_list = [0, 10, 99, 4] — we construct a list — a container for
the four values. Let’s look at the my_list value:

my_list

[0, 10, 99, 4]

Notice that we do not see array in the display — this is not an array but a list:

type(my_list)

<class 'list'>
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A list is a basic Python type. We can construct it by using the square brackets notation that
you see above; we start with [, then we put the values we want to go in the list, separated by
commas, followed by ]. Here is another list:

# Creating another list.
list_2 = [5, 10, 20]

As you saw, we have been building arrays by building lists, and then passing the list to the
np.array function, to create an array.

list_again = [100, 10, 0]
np.array(list_again)

array([100, 10, 0])

Of course, we can do this one line, as we have been doing up till now, by constructing the list
inside the parentheses of the function. So, the following cell has just the same output as the
cell above:

# Constructing the list inside the function brackets.
np.array([100, 10, 0])

array([100, 10, 0])

Lists are like arrays in that they are values that contain values, but they are unlike arrays in
various ways — that we will not go into now. We often use lists to construct sequences into
lists to turn them into arrays. For our purposes, and particularly for our calculations, arrays
are much more useful and efficient than lists.

7.4 String values

So far, all the values you have seen in Python arrays have been numbers. Now we get on to
values that are bits of text. These are called strings.

Here is a single Python string value:

s = "Resampling"
s
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'Resampling'

What is the type of the new bit-of-text value s?

type(s)

<class 'str'>

The Python str value is a bit of text, and therefore consists of a sequence of characters.

As arrays are containers for other things, such as numbers, strings are containers for charac-
ters.

As we can find the number of elements in an array (Section 6.5), we can find the number of
characters in a string with the len function:

# Number of characters in s
len(s)

10

As we can index into array values to get individual elements (Section 6.6), we can index into
string values to get individual characters:

# Get the second character of the string
# Remember, Python's index positions start at 0.
second_char = s[1]
second_char

'e'

7.5 Strings in arrays

As we can store numbers as elements in arrays, we can also store strings as array elements.

# Just for clarity, make the list first.
# Lists can also contain strings.
list_of_strings = ['Julian', 'Lincoln', 'Simon']
# Then pass the list to np.array to make the array.
arr_of_strings = np.array(list_of_strings)
arr_of_strings
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array(['Julian', 'Lincoln', 'Simon'], dtype='<U7')

# We can also create the list and the array in one line,
# as we have been doing up til now.
arr_of_strings = np.array(['Julian', 'Lincoln', 'Simon'])
arr_of_strings

array(['Julian', 'Lincoln', 'Simon'], dtype='<U7')

Notice the array dtype:

arr_of_strings.dtype

dtype('<U7')

The U in the dtype tells you that the elements in the array are Unicode strings (Unicode is
a computer representation of text characters). The number after the U gives the maximum
number of characters for any string in the array, here set to the length of the longest string
when we created the array.

Take care with Numpy string arrays

It is easy to run into trouble with Numpy string arrays where the elements have a
maximum length, as here. Remember, the dtype of the array tells you what type of
element the array can hold. Here the dtype is telling you that the array can hold strings
of maximum length 7 characters. Now imagine trying to put a longer string into the
array — what do you think would happen?
This happens:

# An array of small strings.
small_strings = np.array(['six', 'one', 'two'])
small_strings.dtype

dtype('<U3')

# Set a new value for the first element (first string).
small_strings[0] = 'seven'
small_strings

array(['sev', 'one', 'two'], dtype='<U3')
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Numpy truncates the new string to match the original maximum length.
For that reason, it is often useful to instruct Numpy that you want to use effectively
infinite length strings, by specifying the array dtype as object when you make the array,
like this:

# An array of small strings, but this time, tell Numpy
# that the strings should be of effectively infinite length.
small_strings_better = np.array(['six', 'one', 'two'], dtype=object)
small_strings_better

array(['six', 'one', 'two'], dtype=object)

Notice that the code uses a named function argument (Section 5.8), to specify to np.array
that the array elements should be of type object. This type can store any Python
value, and so, when the array is storing strings, it will use Python’s own string values
as elements, rather than the more efficient but more fragile Unicode strings that Numpy
uses by default.

# Set a new value for the first element in the new array.
small_strings_better[0] = 'seven'
small_strings_better

array(['seven', 'one', 'two'], dtype=object)

As for any array, you can select elements with indexing. When you select an element with a
given position (index), you get the string at at that position:

# Julian Lincoln Simon's second name.
# (Remember, Python's positions start at 0).
middle_name = arr_of_strings[1]
middle_name

np.str_('Lincoln')

As for numbers, we can compare strings with, for example, the == operator, that asks whether
the two strings are equal:

middle_name == 'Lincoln'

True
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7.6 Repeating elements

Now let us go back to the problem of selecting black and white jurors.

We started with the strategy of using numbers 0 through 25 to mean “black” jurors, and 26
through 99 to mean “white” jurors. We selected values at random from 0 through 99, and
then worked out whether the number meant a “black” juror (was less than 26) or a “white”
juror (was greater than 25).

It would be good to use strings instead of numbers to identify the potential jurors. Then we
would not have to remember our coding of 0 through 25 and 26 through 99.

If only there was a way to make an array of 100 strings, where 26 of the strings were “black” and
74 were “white”. Then we could select randomly from that array, and it would be immediately
obvious that we had a “black” or “white” juror.

Luckily, of course, we can do that, by using the np.repeat function to construct the array.

Here is how that works:

# The values that we will repeat to fill up the larger array.
# Use a list to store the sequence of values.
juror_types = ['black', 'white']
# The number of times we want to repeat "black" and "white".
# Use a list to store the sequence of values.
repeat_nos = [26, 74]
# Repeat "black" 26 times and "white" 74 times.
# We have passed two lists here, but we could also have passed
# arrays - the Numpy repeat function converts the lists to arrays
# before it builds the repeats.
jury_pool = np.repeat(juror_types, repeat_nos)
# Show the result
jury_pool

array(['black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'black', 'black', 'black', 'black', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
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'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white'], dtype='<U5')

We can use this array of repeats of strings, to sample from. The result is easier to grasp,
because we are using the string labels, instead of numbers:

# Select one juror at random from the black / white pool.
one_juror = rnd.choice(jury_pool)
one_juror

np.str_('white')

We can select our full jury of 12 jurors, and see the results in a more obvious form:

# Select 12 jurors at random from the black / white pool.
one_jury = rnd.choice(jury_pool, 12)
one_jury

array(['white', 'white', 'white', 'white', 'black', 'white', 'black',
'white', 'white', 'black', 'black', 'white'], dtype='<U5')

Using the size argument to rnd.choice

In the code above, we have specified the size of the sample we want (12) with the second
argument to rnd.choice. As you saw in Section 5.8, we can also give names to the
function arguments, in this case, to make it clearer what we mean by “12” in the code
above. In fact, from now on, that is what we will do; we will specify the size of our
sample by using the name for the function argument to rnd.choice — size — like this:

# Select 12 jurors at random from the black / white pool.
# Specify the sample size using the "size" named argument.
one_jury = rnd.choice(jury_pool, size=12)
one_jury

array(['black', 'white', 'white', 'white', 'black', 'white', 'black',
'white', 'white', 'white', 'white', 'white'], dtype='<U5')
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We can use == on the array to get True values where the juror was “black” and False values
otherwise:

are_black = one_jury == 'black'
are_black

array([ True, False, False, False, True, False, True, False, False,
False, False, False])

Finally, we can np.sum to find the number of black jurors (Section 5.14):

# Number of black jurors in this simulated jury.
n_black = np.sum(are_black)
n_black

np.int64(3)

Putting that all together, this is our new procedure to select one jury and count the number
of black jurors:

one_jury = rnd.choice(jury_pool, size=12)
are_black = one_jury == 'black'
n_black = np.sum(are_black)
n_black

np.int64(3)

Or we can be even more compact by putting several statements together into one line:

# The same as above, but on one line.
n_black = np.sum(rnd.choice(jury_pool, size=12) == 'black')
n_black

np.int64(1)
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7.7 Resampling with and without replacement

Now let us return to the details of Robert Swain’s case, that you first saw in Chapter 6.

We looked at the composition of Robert Swain’s 12-person jury — but in fact, by law, that
does not have to be representative of the eligible jurors. The 12-person jury is drawn from a
jury panel, of 100 people, and this should, in turn, be drawn from the population of all eligible
jurors in the county, consisting, at the time, of “all male citizens in the community over 21 who
are reputed to be honest, intelligent men and are esteemed for their integrity, good character
and sound judgment.” So, unless there was some bias against black jurors, we might expect
the 100-person jury panel to be a plausibly random sample of the eligible jurors, of whom 26%
were black. See the Supreme Court case judgement for details.

In fact, in Robert Swain’s trial, there were 8 black members in the 100-person jury panel.
We will leave it to you to adapt the simulation from Chapter 6 to ask the question — is 8%
surprising as a random sample from a population with 26% black people?

But we have a different question: given that 8 out of 100 of the jury panel were black, is it
surprising that none of the 12-person jury were black? As usual, we can answer that question
with simulation.

Let’s think about what a single simulated jury selection would look like.

First we compile a representation of the actual jury panel, using the tools we have used above.

juror_types = ['black', 'white']
# in fact there were 8 black jurors and 92 white jurors.
panel_nos = [8, 92]
jury_panel = np.repeat(juror_types, panel_nos)
# Show the result
jury_panel

array(['black', 'black', 'black', 'black', 'black', 'black', 'black',
'black', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
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'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white', 'white', 'white',
'white', 'white'], dtype='<U5')

Now consider taking a 12-person jury at random from this panel. We select the first juror
at random, so that juror has an 8 out of 100 chance of being black. But when we select the
second jury member, the situation has changed slightly. We can’t select the first juror again,
so our panel is now 99 people. If our first juror was black, then the chances of selecting another
black juror next are not 8 out of 100, but 7 out of 99 — a smaller chance. The problem is, as
we shall see in more detail later, the chances of getting a black juror as the second, and third
and fourth members of the jury depend on whether we selected a black juror as the first and
second and third jury members. At its most extreme, imagine we had already selected eight
jurors, and by some strange chance, all eight were black. Now our chances of selecting a black
juror as the ninth juror are zero — there are no black jurors left to select from the panel.

In this case we are selecting jurors from the panel without replacement, meaning, that once we
have selected a particular juror, we cannot select them again, and we do not put them back
into the panel when we select our next juror.

This is the probability equivalent of the situation when you are dealing a hand of cards. Let’s
say someone is dealing you, and you only, a hand of five cards. You get an ace as your first
card. Your chances of getting an ace as your first card were just the number of aces in the deck
divided by the number of cards — four in 52 – 4

52 . But for your second card, the probability has
changed, because there is one less ace remaining in the pack, and one less card, so your chances
of getting an ace as your second card are now 3

51 . This is sampling without replacement —
in a normal game, you can’t get the same card twice. Of course, you could imagine getting a
hand where you sampled with replacement. In that case, you’d get a card, you’d write down
what it was, and you’d give the card back to the dealer, who would replace the card in the
deck, shuffle again, and give you another card.

As you can see, the chances change if you are sampling with or without replacement, and the
kind of sampling you do, will dictate how you model your chances in your simulations.

Because this distinction is so common, and so important, the machinery you have already seen
in rnd.choice has simple ways for you to select your sampling type. You have already seen
sampling with replacement, and it looks like this:

# Take a sample of 12 jurors from the panel *with replacement*
# With replacement is the default for `rnd.choice`.
strange_jury = rnd.choice(jury_panel, size=12)
strange_jury

array(['white', 'white', 'white', 'black', 'white', 'white', 'white',
'white', 'white', 'white', 'white', 'white'], dtype='<U5')
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This is a strange jury, because it can select any member of the jury pool more than once.
Perhaps that juror would have to fill two (or more!) seats, or run quickly between them. But
of course, that is not how juries are selected. They are selected without replacement:

# Take a sample of 12 jurors from the panel *without replacement*
ok_jury = rnd.choice(jury_panel, 12, replace=False)
ok_jury

array(['white', 'white', 'white', 'white', 'black', 'white', 'white',
'white', 'white', 'white', 'white', 'white'], dtype='<U5')

Note 8: Comments at the end of lines

You have already seen comment lines. These are lines beginning with #, to signal to
Python that the rest of the line is text for humans to read, but Python to ignore.

# This is a comment. Python ignores this line.

You can also put comments at the end of code lines, by finishing the code part of the
line, and then putting a #, followed by more text. Again, Python will ignore everything
after the # as a text for humans, but not for Python.

print('Hello') # This is a comment at the end of the line.

Hello

To finish the procedure for simulating a single jury selection, we count the number of black
jurors:

n_black = np.sum(ok_jury == 'black') # How many black jurors?
n_black

np.int64(1)

Now we have the procedure for one simulated trial, here is the procedure for 10000 simulated
trials.
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counts = np.zeros(10000)
for i in np.arange(10000):

# Single trial procedure
jury = rnd.choice(jury_panel, size=12, replace=False)
n_black = np.sum(jury == 'black') # How many black jurors?
# Store the result
counts[i] = n_black

# Number of juries with 0 black jurors.
zero_black = np.sum(counts == 0)
# Proportion
p_zero_black = zero_black / 10000
print(p_zero_black)

0.3421

We have found that, when there are only 8% black jurors in the jury panel, having no black
jurors in the final jury happens about 34% of the time, even in this case, where the jury is
selected completely at random from the jury panel.

We should look for the main source of bias in the initial selection of the jury panel, not in the
selection of the jury from the panel.

End of notebook: Sampling tools

sampling_tools starts at Note 7.

With or without replacement for the original jury selection

You may have noticed in Chapter 6 that we were sampling Robert Swain’s jury from the
eligible pool of jurors, with replacement. You might reasonably ask whether we should
have selected from the eligible jurors without replacement, given that the same juror
cannot serve more than once in the same jury, and therefore, the same argument applies
there as here.
The trick there was that we were selecting from a very large pool of many thousand
eligible jurors, of whom 26% were black. Let’s say there were 10,000 eligible jurors, of
whom 2,600 were black. When selecting the first juror, there is exactly a 2,600 in 10,000
chance of getting a black juror — 26%. If we do get a black juror first, then the chance
that the second juror will be black has changed slightly, 2,599 in 9,999. But these changes
are very small; even if we select eleven black jurors out of eleven, when we come to the
twelfth juror, we still have a 2,589 out of 9,989 chance of getting another black juror,
and that works out at a 25.92% chance — hardly changed from the original 26%. So
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yes, you’d be right, we really should have compiled our population of 2,600 black jurors
and 7,400 white jurors, and then sampled without replacement from that population, but
as the resulting sample probabilities will be very similar to the simpler sampling with
replacement, we chose to try and slide that one quietly past you, in the hope you would
forgive us when you realized.

7.8 Conclusion

This chapter introduced you to the idea of strings — values in Python that store bits of
text. Strings are very useful as labels for the entities we are sampling from, when we do our
simulations. Strings are particularly useful when we use them with arrays, and one way we
often do that is to build up arrays of strings to sample from, using the np.repeat function.

There is a fundamental distinction between two different types of sampling — sampling with
replacement, where we draw an element from a larger pool, then put that element back before
drawing again, and sampling without replacement, where we remove the element from the
remaining pool when we draw it into the sample. As we will see later, it is often a judgment
call which of these two types of sampling is a more reasonable model of the world you are
trying to simulate.
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8 Probability Theory, Part 1

8.1 Introduction

Let’s assume we understand the nature of the system or mechanism that produces the uncertain
events in which we are interested. That is, the probability of the relevant independent simple
events is assumed to be known, the way we assume we know the probability of a single “6”
with a given die. The task is to determine the probability of various sequences or combinations
of the simple events — say, three “6’s” in a row with the die. These are the sorts of probability
problems dealt with in this chapter.

The resampling method — or just call it simulation or Monte Carlo method, if you prefer —
will be illustrated with classic examples. Typically, a single trial of the system is simulated
with cards, dice, random numbers, or a computer program. Then trials are repeated again and
again to estimate the frequency of occurrence of the event in which we are interested; this is
the probability we seek. We can obtain as accurate an estimate of the probability as we wish
by increasing the number of trials. The key task in each situation is designing an experiment
that accurately simulates the system in which we are interested.

This chapter begins the Monte Carlo simulation work that culminates in the resampling method
in statistics proper. The chapter deals with problems in probability theory — that is, situations
where one wants to estimate the probability of one or more particular events when the basic
structure and parameters of the system are known. In later chapters we move on to inferential
statistics, where similar simulation work is known as resampling.

8.2 Definitions

A few definitions first:

• Simple Event: An event such as a single flip of a coin, or one draw of a single card. A
simple event cannot be broken down into simpler events of a similar sort.

• Simple Probability (also called “primitive probability”): The probability that a simple
event will occur; for example, that my favorite football team, the Washington Comman-
ders, will win on Sunday.
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During a recent season, the “experts” said that the Commanders had a 60 percent chance of
winning on Opening Day; that estimate is a simple probability. We can model that probability
by putting into a bucket six green balls to stand for wins, and four red balls to stand for losses
(or we could use 60 and 40 balls, or 600 and 400). For the outcome on any given day, we draw
one ball from the bucket, and record a simulated win if the ball is green, a loss if the ball is
red.

So far the bucket has served only as a physical representation of our thoughts. But as we shall
see shortly, this representation can help us think clearly about the process of interest to us. It
can also give us information that is not yet in our thoughts.

Estimating simple probabilities wisely depends largely upon gathering evidence well. It also
helps to adjust one’s probability estimates skillfully to make them internally consistent. Esti-
mating probabilities has much in common with estimating lengths, weights, skills, costs, and
other subjects of measurement and judgment.

Some more definitions:

• Composite Event: A composite event is the combination of two or more simple events.
Examples include all heads in three throws of a single coin; all heads in one throw of
three coins at once; Sunday being a nice day and the Commanders winning; and the
birth of nine females out of the next ten calves born if the chance of a female in a single
birth is 0.48.

• Compound Probability: The probability that a composite event will occur.

The difficulty in estimating simple probabilities such as the chance of the Commanders winning
on Sunday arises from our lack of understanding of the world around us. The difficulty of
estimating compound probabilities such as the probability of it being a nice day Sunday and
the Commanders winning is the weakness in our mathematical intuition interacting with our
lack of understanding of the world around us. Our task in the study of probability and statistics
is to overcome the weakness of our mathematical intuition by using a systematic process of
simulation (or the devices of formulaic deductive theory).

Consider now a question about a compound probability: What are the chances of the Com-
manders winning their first two games if we think that each of those games can be modeled
by our bucket containing six red and four green balls? If one drawing from the bucket rep-
resents one game, a second drawing should represent the second game (assuming we replace
the first ball drawn in order to keep the chances of winning the same for the two games). If
so, two drawings from the bucket should represent two games. And we can then estimate the
compound probability we seek with a series of two-ball trial experiments.

More specifically, our procedure in this case — the prototype of all procedures in the resampling
simulation approach to probability and statistics — is as follows:

1. Put six green (“Win”) and four red (“Lose”) balls in a bucket.
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2. Draw a ball, record its color, and replace it (so that the probability of winning the second
simulated game is the same as the first).

3. Draw another ball and record its color.
4. If both balls drawn were green record “Yes”; otherwise record “No.”
5. Repeat steps 2-4 a thousand times.
6. Count the proportion of “Yes”s to the total number of “Yes”s and “No”s; the result is

the probability we seek.

Much the same procedure could be used to estimate the probability of the Commanders win-
ning (say) 3 of their next 4 games. We will return to this illustration again and we will see
how it enables us to estimate many other sorts of probabilities.

• Experiment or Experimental Trial, or Trial, or Resampling Experiment: A simulation
experiment or trial is a randomly-generated composite event which has the same char-
acteristics as the actual composite event in which we are interested (except that in
inferential statistics the resampling experiment is generated with the “benchmark” or
“null” universe rather than with the “alternative” universe).

• Parameter: A numerical property of a universe. For example, the “true” mean (don’t
worry about the meaning of “true”), and the range between largest and smallest members,
are two of its parameters.

8.3 Theoretical and historical methods of estimation

As introduced in Section 3.5, there are two general ways to tackle any probability problem:
theoretical-deductive and empirical, each of which has two sub-types. These concepts have
complicated links with the concept of “frequency series” discussed earlier.

• Empirical Methods. One empirical method is to look at actual cases in nature — for
example, examine all (or a sample of) the families in Brazil that have four children and
count the proportion that have three girls among them. (This is the most fundamental
process in science and in information-getting generally. But in general we do not discuss
it in this book and leave it to courses called “research methods.” I regard that as a
mistake and a shame, but so be it.) In some cases, of course, we cannot get data in such
fashion because it does not exist.

Another empirical method is to manipulate the simple elements in such fashion as to
produce hypothetical experience with how the simple elements behave. This is the heart
of the resampling method, as well as of physical simulations such as wind tunnels.

• Theoretical Methods. The most fundamental theoretical approach is to resort to first
principles, working with the elements in their full deductive simplicity, and examining all
possibilities. This is what we do when we use a tree diagram to calculate the probability
of three girls in families of four children.
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The formulaic approach is a theoretical method that aims to avoid the inconvenience of resort-
ing to first principles, and instead uses calculation shortcuts that have been worked out in the
past.

What the Book Teaches. This book teaches you the empirical method using hypothetical cases.
Formulas can be misleading for most people in most situations, and should be used as a
shortcut only when a person understands exactly which first principles are embodied in the
formulas. But most of the time, students and practitioners resort to the formulaic approach
without understanding the first principles that lie behind them — indeed, their own teachers
often do not understand these first principles — and therefore they have almost no way to
verify that the formula is right. Instead they use canned checklists of qualifying conditions.

8.4 Samples and universes

The terms “sample” and “universe” (or “population”)1 were used earlier without definition.
But now these terms must be defined.

8.4.1 The concept of a sample

For our purposes, a “sample” is a collection of observations for which you obtain the data to
be used in the problem. Almost any set of observations for which you have data constitutes a
sample. (You might, or might not, choose to call a complete census a sample.)

8.5 The concept of a universe or population

For every sample there must also be a universe “behind” it. But “universe” is harder to define,
partly because it is often an imaginary concept. A universe is the collection of things or people
that you want to say that your sample was taken from. A universe can be finite and well defined
— “all live holders of the Congressional Medal of Honor,” “all presidents of major universities,”
“all billion-dollar corporations in the United States.” Of course, these finite universes may
not be easy to pin down; for instance, what is a “major university”? And these universes
may contain some elements that are difficult to find; for instance, some Congressional Medal
winners may have left the country, and there may not be adequate public records on some
billion-dollar corporations.

Universes that are called “infinite” are harder to understand, and it is often difficult to decide
which universe is appropriate for a given purpose. For example, if you are studying a sample
of patients suffering from schizophrenia, what is the universe from which the sample comes?

1“Universe” and “population” are perfect synonyms in scientific research. We choose to use “universe” because
it seems to have fewer confusing associations.
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Depending on your purposes, the appropriate universe might be all patients with schizophrenia
now alive, or it might be all patients who might ever live. The latter concept of the universe
of patients with schizophrenia is imaginary because some of the universe does not exist. And
it is infinite because it goes on forever.

Not everyone likes this definition of “universe.” Others prefer to think of a universe, not as
the collection of people or things that you want to say your sample was taken from, but as
the collection that the sample was actually taken from. This latter view equates the universe
to the “sampling frame” (the actual list or set of elements you sample from) which is always
finite and existent. The definition of universe offered here is simply the most practical, in our
opinion.

8.6 The conventions of probability

Let’s review the basic conventions and rules used in the study of probability:

1. Probabilities are expressed as decimals between 0 and 1, like percentages. The weather
forecaster might say that the probability of rain tomorrow is 0.2, or 0.97.

2. The probabilities of all the possible alternative outcomes in a single “trial” must add
to unity. If you are prepared to say that it must either rain or not rain, with no other
outcome being possible — that is, if you consider the outcomes to be mutually exclusive
(a term that we discuss below), then one of those probabilities implies the other. That
is, if you estimate that the probability of rain is 0.2 — written 𝑃(rain) = 0.2 — that
implies that you estimate that 𝑃(no rain) = 0.8.

Writing probabilities

We will now be writing some simple formulae using probability. Above we write the
probability of rain tomorrow as 𝑃(rain). This probability might be 0.2, and we could
write this as:

𝑃(rain) = 0.2
We can term “rain tomorrow” an event — the event may occur: rain, or it may not occur:
no rain.
We often shorten the name of our event — here rain — to a single letter, such as 𝑅. So,
in this case, we could write 𝑃(rain) = 0.2 as 𝑃(𝑅) = 0.2 — meaning the same thing. We
tend to prefer single letters — as in 𝑃(𝑅) — to longer names — as in 𝑃(rain). This is
because the single letters can be easier to read in these compact formulae.
Above we have written the probability of “rain tomorrow” event not occurring as
𝑃(no rain). Another way of referring to an event not occurring is to suffix the event
name with a caret (^) character like this: 𝑅̂. So read 𝑃( 𝑅̂) as “the probability that it
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will not rain”, and it is just another way of writing 𝑃(no rain). We sometimes call 𝑅̂
the complement of 𝑅.
We use and between two events to mean both events occur.
For example, say we call the event “Commanders win the game” as 𝑊 . One example of
a compound event (see above) would be the event 𝑊and𝑅, meaning, the event where the
Commanders won the game and it rained.

8.7 Mutually exclusive events — the addition rule

Definition: If there are just two events 𝐴 and 𝐵 and they are “mutually exclusive” or “dis-
joint,” each implies the absence of the other. Green and red coats are mutually exclusive for
you if (but only if) you never wear more than one coat at a time.

To state this idea formally, if 𝐴 and 𝐵 are mutually exclusive, then:

𝑃(𝐴 and 𝐵) = 0

If 𝐴 is “wearing a green coat” and 𝐵 is “wearing a red coat” (and you never wear two coats
at the same time), then the probability that you are wearing a green coat and a red coat is 0:
𝑃(𝐴 and 𝐵) = 0.
In that case, outcomes 𝐴 and 𝐵, and hence outcome 𝐴 and its own absence (written 𝑃( 𝐴̂)),
are necessarily mutually exclusive, and hence the two probabilities add to unity:

𝑃(𝐴) + 𝑃( 𝐴̂) = 1

The sales of your store in a given year cannot be both above and below $1 million. Therefore
if 𝑃(sales > $1 million) = 0.2, 𝑃(sales <= $1 million) = 0.8.
This “complements” rule is useful as a consistency check on your estimates of probabilities.
If you say that the probability of rain is 0.2, then you should check that you think that
the probability of no rain is 0.8; if not, reconsider both the estimates. The same for the
probabilities of your team winning and losing its next game.
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8.8 Joint probabilities

Let’s return now to the Commanders. We said earlier that our best guess of the probability
that the Commanders will win the first game is 0.6. Let’s complicate the matter a bit and
say that the probability of the Commanders winning depends upon the weather; on a nice day
we estimate a 0.65 chance of winning, on a nasty (rainy or snowy) day a chance of 0.55. It is
obvious that we then want to know the chance of a nice day, and we estimate a probability
of 0.7. Let’s now ask the probability that both will happen — it will be a nice day and the
Commanders will win. Before getting on with the process of estimation itself, let’s tarry a
moment to discuss the probability estimates. Where do we get the notion that the probability
of a nice day next Sunday is 0.7? We might have done so by checking the records of the past 50
years, and finding 35 nice days on that date. If we assume that the weather has not changed
over that period (an assumption that some might not think reasonable, and the wisdom of
which must be the outcome of some non-objective judgment), our probability estimate of a
nice day would then be 35/50 = 0.7.

Two points to notice here: 1) The source of this estimate is an objective “frequency series.”
And 2) the data come to us as the records of 50 days, of which 35 were nice. We would do
best to stick with exactly those numbers rather than convert them into a single number — 70
percent. Percentages have a way of being confusing. (When his point score goes up from 2 to
3, my racquetball partner is fond of saying that he has made a “fifty percent increase”; that’s
just one of the confusions with percentages.) And converting to a percent loses information:
We no longer know how many observations the percent is based upon, whereas 35/50 keeps
that information.

Now, what about the estimate that the Commanders have a 0.65 chance of winning on a nice
day — where does that come from? Unlike the weather situation, there is no long series of
stable data to provide that information about the probability of winning. Instead, we construct
an estimate using whatever information or “hunch” we have. The information might include
the Commanders’ record earlier in this season, injuries that have occurred, what the “experts”
in the newspapers say, the gambling odds, and so on. The result certainly is not “objective,”
or the result of a stable frequency series. But we treat the 0.65 probability in quite the same
way as we treat the .7 estimate of a nice day. In the case of winning, however, we produce an
estimate expressed directly as a percent.

If we are shaky about the estimate of winning — as indeed we ought to be, because so much
judgment and guesswork inevitably goes into it — we might proceed as follows: Take hold of
a bucket and two bags of balls, green and red. Put into the bucket some number of green balls
— say 10. Now add enough red balls to express your judgment that the ratio is the ratio of
expected wins to losses on a nice day, adding or subtracting green balls as necessary to get
the ratio you want. If you end up with 13 green and 7 red balls, then you are “modeling” a
probability of 0.65, as stated above. If you end up with a different ratio of balls, then you have
learned from this experiment with your own mind processes that you think that the probability
of a win on a nice day is something other than 0.65.
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Don’t put away the bucket. We will be using it again shortly. And keep in mind how we have
just been using it, because our use later will be somewhat different though directly related.

One good way to begin the process of producing a compound estimate is by portraying the
available data in a “tree diagram” like Figure 8.1. The tree diagram shows the possible events
in the order in which they might occur. A tree diagram is extremely valuable whether you
will continue with either simulation or the formulaic method.

niceday(P=.7)

nastyday(P=.3)

Cmdrswin(P=.65) =.455(Probabilityofnice
dayCmdrswin)and

Cmdrslose(P=.35)

Cmdrswin(P=.55)

Cmdrslose(P=.45)

Figure 8.1: Tree diagram

8.9 The Monte Carlo simulation method (resampling)

The steps we follow to simulate an answer to the compound probability question are as fol-
lows:

1. Put seven blue balls (for “nice day”) and three yellow balls (“not nice”) into a bucket
labeled A.

2. Put 65 green balls (for “win”) and 35 red balls (“lose”) into a bucket labeled B. This
bucket represents the chance that the Commanders will when it is a nice day.

3. Draw one ball from bucket A. If it is blue, carry on to the next step; otherwise record
“no” and stop.

4. If you have drawn a blue ball from bucket A, now draw a ball from bucket B, and if it
is green, record “yes” on a score sheet; otherwise write “no.”

5. Repeat steps 3-4 perhaps 10000 times.
6. Count the number of “yes” trials.
7. Compute the probability you seek as (number of “yeses”/ 10000). (This is the same as

(number of “yeses”/ (number of “yeses” + number of “noes”)

Actually doing the above series of steps by hand is useful to build your intuition about proba-
bility and simulation methods. But the procedure can also be simulated with a computer. We
will use Python to do this in a moment.
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8.10 If statements in Python

Before we get to the simulation, we need another feature of Python, called a conditional or if
statement.

Here we have rewritten step 4 above, but using indentation to emphasize the idea:

If you have drawn a blue ball from bucket A:
Draw a ball from bucket B
if the ball is green:

record "yes"
otherwise:

record "no".

Notice the structure. The first line is the header of the if statement. It has a condition —
this is why if statements are often called conditional statements. The condition here is “you
have drawn a blue ball from bucket A”. If this condition is met — it is True that you have
drawn a blue ball from bucket A then we go on to do the stuff that is indented. Otherwise we
do not do any of the stuff that is indented.

The indented stuff above is the body of the if statement. It is the stuff we do if the conditional
at the top is True.

Now let’s see how we would write that in Python.

Let’s make bucket A. Remember, this is the weather bucket. It has seven blue balls (for 70%
fine days) and 3 yellow balls (for 30% rainy days). See Section 7.6 for the np.repeat way of
repeating elements multiple times.

Note 9: Notebook: Fine day and win

• Download notebook
• Interact

# Load the Numpy array library.
import numpy as np

# Make a random number generator
rnd = np.random.default_rng()

# blue means "nice day", yellow means "not nice".
bucket_A = np.repeat(['blue', 'yellow'], [7, 3])
bucket_A
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array(['blue', 'blue', 'blue', 'blue', 'blue', 'blue', 'blue', 'yellow',
'yellow', 'yellow'], dtype='<U6')

Now let us draw a ball at random from bucket_A:

a_ball = rnd.choice(bucket_A)
a_ball

np.str_('blue')

How we run our first if statement. Running this code will display “The ball was blue” if the
ball was blue, otherwise it will not display anything:

if a_ball == 'blue':
print('The ball was blue')

The ball was blue

Notice that the header line has if, followed by the conditional expression (question) a_ball
== 'blue'. The header line finishes with a colon :. The body of the if statement is one or
more indented lines. Here there is only one line: print('The ball was blue'). Python only
runs the body of the if statement if the condition is True.2

To confirm we see “The ball was blue” if a_ball is 'blue' and nothing otherwise, we can set
a_ball and re-run the code:

# Set value of a_ball so we know what it is.
a_ball = 'blue'

if a_ball == 'blue':
# The conditional statement is True in this case, so the body does run.
print('The ball was blue')

The ball was blue

2In this case, the result of the conditional expression is in fact either True or False. Python is more liberal on
what it allows in the conditional expression; it will take whatever the result is, and then force the result into
either True or False, in fact, by wrapping the result with the bool function, that takes anything as input,
and returns either True or False. Therefore, we could refer to the result of the conditional expression as
something “truthy” — that is - something that comes back as True or False from the bool function. In the
case here, that does not arise, because the result is in fact either exactly True or exactly False.
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a_ball = 'yellow'

if a_ball == 'blue':
# The conditional statement is False, so the body does not run.
print('The ball was blue')

We can add an else clause to the if statement. Remember the body of the if statement runs
if the conditional expression (here a_ball == 'blue') is True. The else clause runs if the
conditional statement is False. This may be clearer with an example:

a_ball = 'blue'

if a_ball == 'blue':
# The conditional expression is True in this case, so the body runs.
print('The ball was blue')

else:
# The conditional expression was True, so the else clause does not run.
print('The ball was not blue')

The ball was blue

Notice that the else clause of the if statement starts with a header line — else — followed
by a colon :. It then has its own indented body of indented code. The body of the else clause
only runs if the initial conditional expression is not True.

a_ball = 'yellow'

if a_ball == 'blue':
# The conditional expression was False, so the body does not run.
print('The ball was blue')

else:
# but the else clause does run.
print('The ball was not blue')

The ball was not blue

With this machinery, we can now implement the full logic of step 4 above:

152



If you have drawn a blue ball from bucket A:
Draw a ball from bucket B
if the ball is green:

record "yes"
otherwise:

record "no".

Here is bucket B. Remember green means “win” (65% of the time) and red means “lose” (35%
of the time). We could call this the “Commanders win when it is a nice day” bucket:

bucket_B = np.repeat(['green', 'red'], [65, 35])

The full logic for step 4 is:

# By default, say we have no result.
result = 'No result'
a_ball = rnd.choice(bucket_A)
# If you have drawn a blue ball from bucket A: (then run indented code)
if a_ball == 'blue':

# Draw a ball at random from bucket B
b_ball = rnd.choice(bucket_B)
# if the ball is green: (then run the indented code)
if b_ball == 'green':

# record "yes"
result = 'yes'

# otherwise (not green):
else:

# record "no".
result = 'no'

# Show what we got in this case.
result

'yes'

Now we have everything we need to run many trials with the same logic.

# The result of each trial.
# To start with, say we have no result for all the trials.
z = np.repeat(['No result'], 10000)

# Repeat trial procedure 10000 times
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for i in range(10000):
# draw one "ball" for the weather, store in "a_ball"
# blue is "nice day", yellow is "not nice"
a_ball = rnd.choice(bucket_A)
if a_ball == 'blue': # nice day

# if no rain, check on game outcome
# green is "win" (give nice day), red is "lose" (given nice day).
b_ball = rnd.choice(bucket_B)
if b_ball == 'green': # Commanders win

# Record result.
z[i] = 'yes'

else:
z[i] = 'no'

# End of trial, go back to the beginning until done.

# Count of the number of times we got "yes".
k = np.sum(z == 'yes')
# Show the proportion of *both* fine day *and* wins
kk = k / 10000
kk

np.float64(0.4603)

The above procedure gives us the probability that it will be a nice day and the Commanders
will win — about 46%.

End of notebook: Fine day and win

fine_win starts at Note 9.

Let’s say that we think that the Commanders have a 0.55 (55%) chance of winning on a not-
nice day. With the aid of a bucket with a different composition — one made by substituting
55 green and 45 yellow balls in Step 4 — a similar procedure yields the chance that it will be a
nasty day and the Commanders will win. With a similar substitution and procedure we could
also estimate the probabilities that it will be a nasty day and the Commanders will lose, and
a nice day and the Commanders will lose. The sum of these probabilities should come close to
unity, because the sum includes all the possible outcomes. But it will not exactly equal unity
because of what we call “sampling variation” or “sampling error.”

Please notice that each trial of the procedure begins with the same numbers of balls in the
buckets as the previous trial. That is, you must replace the balls you draw after each trial
in order that the probabilities remain the same from trial to trial. Later we will discuss the
general concept of replacement versus non-replacement more fully.
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8.11 The deductive formulaic method

It also is possible to get an answer with formulaic methods to the question about a nice day
and the Commanders winning. The following discussion of nice-day-Commanders-win handled
by formula is a prototype of the formulaic deductive method for handling other problems.

Return now to the tree diagram (Figure 8.1) above. We can read from the tree diagram that
70 percent of the time it will be nice, and of that 70 percent of the time, 65 percent of the
games will be wins. That is, 0.65∗0.7 = 0.455 = the probability of a nice day and a win. That
is the answer we seek. The method seems easy, but it also is easy to get confused and obtain
the wrong answer.

8.12 Multiplication rule

We can generalize what we have just done. The foregoing formula exemplifies what is known
as the “multiplication rule”:

𝑃(nice day and win) = 𝑃(nice day) ∗ 𝑃 (winning | nice day)

where the vertical line in 𝑃(winning | nice day) means “conditional upon” or “given that.”
That is, the vertical line indicates a “conditional probability,” a concept we must consider in
a minute.

The multiplication rule is a formula that produces the probability of the combination (juncture)
of two or more events. More discussion of it will follow below.

8.13 Conditional and unconditional probabilities

Two kinds of probability statements — conditional and unconditional — must now be distin-
guished.

It is the appropriate concept when many factors, all small relative to each other rather than
one force having an overwhelming influence, affect the outcome.

A conditional probability is formally written 𝑃(Commanders win | rain) = 0.65, and it is
read “The probability that the Commanders will win if (given that) it rains is 0.65.” It is the
appropriate concept when there is one (or more) major event of interest in decision contexts.

Let’s use another football example to explain conditional and unconditional probabilities. In
the year this was being written, the University of Maryland had an unpromising football team.
Someone may nevertheless ask what chance the team had of winning the post season game
at the bowl to which only the best team in the University of Maryland’s league is sent. One
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may say that if by some miracle the University of Maryland does get to the bowl, its chance
would be a bit less than 50- 50 — say, 0.40. That is, the probability of its winning, conditional
on getting to the bowl is 0.40. But the chance of its getting to the bowl at all is very low,
perhaps 0.01. If so, the unconditional probability of winning at the bowl is the probability of
its getting there multiplied by the probability of winning if it gets there; that is, 0.01 x 0.40
= 0.004. (It would be even better to say that .004 is the probability of winning conditional
only on having a team, there being a league, and so on, all of which seem almost sure things.)
Every probability is conditional on many things — that war does not break out, that the sun
continues to rise, and so on. But if all those unspecified conditions are very sure, and can be
taken for granted, we talk of the probability as unconditional.

A conditional probability is a statement that the probability of an event is such-and-such if
something else is so-and-so; it is the “if” that makes a probability statement conditional. True,
in some sense all probability statements are conditional; for example, the probability of an
even-numbered spade is 6/52 if the deck is a poker deck and not necessarily if it is a pinochle
deck or Tarot deck. But we ignore such conditions for most purposes.

Most of the use of the concept of probability in the social sciences is conditional probability. All
hypothesis-testing statistics (discussed starting in Chapter 20) are conditional probabilities.

Here is the typical conditional-probability question used in social-science statistics: What is
the probability of obtaining this sample S (by chance) if the sample were taken from universe
A? For example, what is the probability of getting a sample of five children with I.Q.s over
100 by chance in a sample randomly chosen from the universe of children whose average I.Q.
is 100?

One way to obtain such conditional-probability statements is by examination of the results gen-
erated by universes like the conditional universe. For example, assume that we are considering
a universe of children where the average I.Q. is 100.

Write down “over 100” and “under 100” respectively on many slips of paper, put them into a
hat, draw five slips several times, and see how often the first five slips drawn are all over 100.
This is the resampling (Monte Carlo simulation) method of estimating probabilities.

Another way to obtain such conditional-probability statements is formulaic calculation. For
example, if half the slips in the hat have numbers under 100 and half over 100, the probability
of getting five in a row above 100 is 0.03125 — that is, 0.55, or 0.5 x 0.5 x 0.5 x 0.5 x 0.5,
using the multiplication rule introduced above. But if you are not absolutely sure you know
the proper mathematical formula, you are more likely to come up with a sound answer with
the simulation method.

Let’s illustrate the concept of conditional probability with four cards — two aces and two 3’s
(or two black and two red). What is the probability of an ace? Obviously, 0.5. If you first
draw an ace, what is the probability of an ace now? That is, what is the probability of an ace
conditional on having drawn one already? Obviously not 0.5.
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This change in the conditional probabilities is the basis of mathematician Edward Thorp’s
famous system of card-counting to beat the casinos at blackjack (Twenty One).

Casinos can defeat card counting by using many decks at once so that conditional probabilities
change more slowly, and are not very different than unconditional probabilities. Looking
ahead, we will see that sampling with replacement, and sampling without replacement from a
huge universe, are much the same in practice, so we can substitute one for the other at our
convenience.

Let’s further illustrate the concept of conditional probability with a puzzle (from Gardner
2001, 288). “… shuffle a packet of four cards — two red, two black — and deal them face
down in a row. Two cards are picked at random, say by placing a penny on each. What is the
probability that those two cards are the same color?”

1. Play the game with the cards 100 times, and estimate the probability sought.

OR

1. Put slips with the numbers “1,” “1,” “2,” and “2” in a hat, or in an array named N on a
computer.

2. Shuffle the slips of paper by shaking the hat or shuffling the array (of which more below).
3. Take two slips of paper from the hat or from N, to get two numbers.
4. Call the first number you selected A and the second B.
5. Are A and B the same? If so, record “Yes” otherwise “No”.
6. Repeat (2-5) 10000 times, and count the proportion of “Yes” results. That proportion

equals the probability we seek to estimate.

Before we proceed to do this procedure in Python, we need a command to shuffle an array.

8.14 Shuffling with rnd.permuted

In the recipe above, the array N has four values:

# Numbers representing the slips in the hat.
N = np.array([1, 1, 2, 2])

For the physical simulation, we specified that we would shuffle the slips of paper with these
numbers, meaning that we would jumble them up into a random order. When we have done
this, we will select two slips — say the first two — from the shuffled slips.

As we will be discussing more in various places, this shuffle-then-draw procedure is also called
resampling without replacement. The without replacement idea refers to the fact that, after
shuffling, we take a first virtual slip of paper from the shuffled array, and then a second — but
we do not replace the first slip of paper into the shuffled array before drawing the second. For
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example, say I drew a “1” from N for the first value. If I am sampling without replacement
then, when I draw the next value, the candidates I am choosing from are now “1”, “2” and “2”,
because I have removed the “1” I got as the first value. If I had instead been sampling with
replacement, then I would put back the “1” I had drawn, and would draw the second sample
from the full set of “1”, “1”, “2”, “2”.

You can use rnd.permuted to shuffle an array into a random order.

Like rnd.choice, rnd.permuted is a function (actually, a method) of rnd, that takes an array
as input, and produces a version of the array, where the elements are in random order.

# The array N, shuffled into a random order.
shuffled = rnd.permuted(N)
# The "slips" are now in random order.
shuffled

array([2, 2, 1, 1])

See Section 11.4 for some more discussion of shuffling and sampling without replacement.

8.15 Code answers to the cards and pennies problem

Note 10: Notebook: Cards and pennies

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

# Numbers representing the slips in the hat.
N = np.array([1, 1, 2, 2])

# An array in which we will store the result of each trial.
z = np.repeat(['No result yet'], 10000)

for i in range(10000):
# Shuffle the numbers in N into a random order.
shuffled = rnd.permuted(N)
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A = shuffled[0] # The first slip from the shuffled array.
B = shuffled[1] # The second slip from the shuffled array.

# Set the result of this trial.
if A == B:

z[i] = 'Yes'
else:

z[i] = 'No'

# How many times did we see "Yes"?
k = np.sum(z == 'Yes')

# The proportion.
kk = k / 10000

print(kk)

0.337

Now let’s play the game differently, first picking one card and putting it back and shuffling
before picking a second card. What are the results now? You can try it with the cards, but
here is another program, similar to the last, to run that variation.

# The cards / pennies game - but replacing the slip and re-shuffling, before
# drawing again.

# An array in which we will store the result of each trial.
z = np.repeat(['No result yet'], 10000)

for i in range(10000):
# Shuffle the numbers in N into a random order.
first_shuffle = rnd.permuted(N)
# Draw a slip of paper.
A = first_shuffle[0] # The first slip.

# Shuffle again (with all the slips).
second_shuffle = rnd.permuted(N)
# Draw a slip of paper.
B = second_shuffle[0] # The second slip.

# Set the result of this trial.

159



if A == B:
z[i] = 'Yes'

else:
z[i] = 'No'

# How many times did we see "Yes"?
k = np.sum(z == 'Yes')

# The proportion.
kk = k / 10000

print(kk)

0.5072

End of notebook: Cards and pennies

cards_pennies starts at Note 10.

Why do you get different results in the two cases? Let’s ask the question differently: What is
the probability of first picking a black card? Clearly, it is 50-50, or 0.5. Now, if you first pick
a black card, what is the probability in the first game above of getting a second black card?
There are two red and one black cards left, so now p = 1/3.

But in the second game, what is the probability of picking a second black card if the first one
you pick is black? It is still 0.5 because we are sampling with replacement.

The probability of picking a second black card conditional on picking a first black card in the
first game is 1/3, and it is different from the unconditional probability of picking a black card
first. But in the second game the probability of the second black card conditional on first
picking a black card is the same as the probability of the first black card.

So the reason you lose money if you play the first game at even odds against a carnival game
operator is because the conditional probability is different than the original probability.

And an illustrative joke: The best way to avoid there being a live bomb aboard your plane
flight is to take an inoperative bomb aboard with you; the probability of one bomb is very low,
and by the multiplication rule, the probability of two bombs is very very low. Two hundred
years ago the same joke was told about the midshipman who, during a battle, stuck his head
through a hole in the ship’s side that had just been made by an enemy cannon ball because
he had heard that the probability of two cannonballs striking in the same place was one in a
million.
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What’s wrong with the logic in the joke? The probability of there being a bomb aboard already,
conditional on your bringing a bomb aboard, is the same as the conditional probability if you
do not bring a bomb aboard. Hence you change nothing by bringing a bomb aboard, and do
not reduce the probability of an explosion.

8.16 The Commanders again, plus leaving the game early

Let’s carry exactly the same process one tiny step further. Assume that if the Commanders
win, there is a 0.3 chance you will leave the game early. Now let us ask the probability of a
nice day, the Commanders winning, and you leaving early. You should be able to see that this
probability can be estimated with three buckets instead of two. Or it can be computed with
the multiplication rule as 0.65 * 0.7 * 0.3 = 0.1365 (about 0.14) — the probability of a nice
day and a win and you leave early.

The book shows you the formal method — the multiplication rule, in this case — for several
reasons: 1) Simulation is weak with very low probabilities, e.g. P(50 heads in 50 throws). But
— a big but — statistics and probability is seldom concerned with very small probabilities.
Even for games like poker, the orders of magnitude of 5 aces in a wild game with joker, or
of a royal flush, matter little. 2) The multiplication rule is wonderfully handy and convenient
for quick calculations in a variety of circumstances. A back-of-the-envelope calculation can be
quicker than a simulation. And it can also be useful in situations where the probability you
will calculate will be very small, in which case simulation can require considerable computer
time to be accurate. (We will shortly see this point illustrated in the case of estimating the
rate of transmission of AIDS by surgeons.) 3) It is useful to know the theory so that you are
able to talk to others, or if you go on to other courses in the mathematics of probability and
statistics.

The multiplication rule also has the drawback of sometimes being confusing, however. If you
are in the slightest doubt about whether the circumstances are correct for applying it, you will
be safer to perform a simulation as we did earlier with the Commanders, though in practice
you are likely to simulate with the aid of a computer program, as we shall see shortly. So
use the multiplication rule only when there is no possibility of confusion. Usually that means
using it only when the events under consideration are independent.

Notice that the same multiplication rule gives us the probability of any particular sequence of
hits and misses — say, a miss, then a hit, then a hit if the probability of a single miss is 2/3.
Among the 2/3 of the trials with misses on the first shot, 1/3 will next have a hit, so 2/3 x
1/3 equals the probability of a miss then a hit. Of those 2/9 of the trials, 1/3 will then have
a hit, or 2/3 x 1/3 x 1/3 = 2/27 equals the probability of the sequence miss-hit-hit.

The multiplication rule is very useful in everyday life. It fits closely to a great many situations
such as “What is the chance that it will rain (.3) and that (if it does rain) the plane will not
fly (.8)?” Hence the probability of your not leaving the airport today is 0.3 x 0.8 = 0.24.
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9 Probability Theory Part I (continued)

9.1 The special case of independence

A key concept in probability and statistics is that of the independence of two events in which
we are interested. Two events are said to be “independent” when one of them does not have any
apparent relationship to the other. If I flip a coin that I know from other evidence is a fair coin,
and I get a head, the chance of then getting another head is still 50-50 (one in two, or one to
one.) And, if I flip a coin ten times and get heads the first nine times, the probability of getting
a head on the tenth flip is still 50-50. Hence the concept of independence is characterized by
the phrase “The coin has no memory.” (Actually the matter is a bit more complicated. If you
had previously flipped the coin many times and knew it to be a fair coin, then the odds would
still be 50-50, even after nine heads. But, if you had never seen the coin before, the run of
nine heads might reasonably make you doubt that the coin was a fair one.)

In the Washington Commanders example above, we needed a different set of buckets to esti-
mate the probability of a nice day plus a win, and of a nasty day plus a win. But what if the
Commanders’ chances of winning are the same whether the day is nice or nasty? If so, we say
that the chance of winning is independent of the kind of day. That is, in this special case,

𝑃 (win | nice day) = 𝑃(win | nasty day) and 𝑃(nice day and win)

= 𝑃(nice day) ∗ 𝑃 (winning | nice day)

= 𝑃(nice day) ∗ 𝑃 (winning)

Note

See section Section 8.13 for an explanation of this notation.

In this case we need only one set of two buckets to make all the estimates.

Independence means that the elements are drawn from 2 or more separate sets of possibilities.
That is, 𝑃 (𝐴|𝐵) = 𝑃 (𝐴| 𝐵̂) = 𝑃(𝐴) and vice versa.
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In other words, if the occurrence of the first event does not change this probability that the
second event will occur, then the events are independent.

Another way to put the matter: Events A and B are said to be independent of each other if
knowing whether A occurs does not change the probability that B will occur, and vice versa.
If knowing whether A does occur alters the probability of B occurring, then A and B are
dependent.

If two events are independent, the multiplication rule simplifies to 𝑃(𝐴 and 𝐵) = 𝑃(𝐴)∗𝑃(𝐵)
. I’ll repeat once more: This rule is simply a mathematical shortcut, and one can
make the desired estimate by simulation.

Also again, if two events are not independent — that is, if 𝑃(𝐴|𝐵) is not equal to 𝑃(𝐴)
because 𝑃(𝐴) is dependent upon the occurrence of 𝐵, then the formula to be used now is,
𝑃(𝐴 and 𝐵) = 𝑃 (𝐴|𝐵) ∗ 𝑃(𝐵) , which is sufficiently confusing that you are probably better
off with a simulation.

What about if each of the probabilities is dependent on the other outcome? There is no easy
formulaic method to deal with such a situation.

People commonly make the mistake of treating independent events as non-independent, per-
haps from superstitious belief. After a long run of blacks, roulette gamblers say that the wheel
is “due” to come up red. And sportswriters make a living out of interpreting various sequences
of athletic events that occur by chance, and they talk of teams that are “due” to win because
of the “Law of Averages.” For example, if Barry Bonds goes to bat four times without a hit,
all of us (including trained statisticians who really know better) feel that he is “due” to get
a hit and that the probability of his doing so is very high — higher that is, than his season’s
average. The so-called “Law of Averages” implies no such thing, of course.

Events are often dependent in subtle ways. A boy may telephone one of several girls chosen at
random. But, if he calls the same girl again (or if he does not call her again), the second event
is not likely to be independent of the first. And the probability of his calling her is different
after he has gone out with her once than before he went out with her.

As noted in the section above, events A and B are said to be independent of each other if
the conditional probabilities of A and B remain the same. And the conditional probabilities
remain the same if sampling is conducted with replacement.

Let’s now re-consider the multiplication rule with the special but important case of indepen-
dence.

9.1.1 Example: Four Events in a Row — The Multiplication Rule

Assume that we want to know the probability of four successful archery shots in a row, where
the probability of a success on a given shot is .25.
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Instead of simulating the process with resampling trials we can, if we wish, arrive at the answer
with the “multiplication rule.” This rule says that the probability that all of a given number
of independent events (the successful shots) will occur (four out of four in this case) is the
product of their individual probabilities — in this case, 1/4 x 1/4 x 1/4 x 1/4 = 1/256. If
in doubt about whether the multiplication rule holds in any given case, however, you may
check by resampling simulation. For the case of four daughters in a row, assuming that the
probability of a girl is .5, the probability is 1/2 x 1/2 x 1/2 x 1/2 = 1/16.

Better yet, we’d use the more exact probability of getting a girl: 100/206, and multiply out the
result as (100/206)4. An important point here, however: we have estimated the probability
of a particular family having four daughters as 1 in 16 — that is, odds of 15 to 1. But note
well: This is a very different idea from stating that the odds are 15 to 1 against some family’s
having four daughters in a row. In fact, as many families will have four girls in a row as will
have boy-girl-boy-girl in that order or girl-boy-girl-boy or any other series of four children.
The chances against any particular series is the same — 1 in 16 — and one-sixteenth of all
four-children families will have each of these series, on average. This means that if your next-
door neighbor has four daughters, you cannot say how much “out of the ordinary” the event
is. It is easy to slip into unsound thinking about this matter.

Why do we multiply the probabilities of the independent simple events to learn the probability
that they will occur jointly (the composite event)? Let us consider this in the context of three
basketball shots each with 1/3 probability of hitting.

Success=1/3x1/3x1/3=1/27
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it

1/3H
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it

1/3
Hit
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it

1/3H
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1/
3H
it

2/3Miss

2/3Miss

2/3Miss

2/3Miss

2/3Miss

2/3Miss

2/3Miss

Figure 9.1: Tree Diagram for 3 Basketball Shots, Probability of a Hit is 1/3

Figure 9.1 is a tree diagram showing a set of sequential simple events where each event is
conditional upon a prior simple event. Hence every probability after the first is a conditional
probability.
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In Figure 9.1, follow the top path first. On approximately one-third of the occasions, the first
shot will hit. Among that third of the first shots, roughly a third will again hit on the second
shot, that is, 1/3 of 1/3 or 1/3 x 1/3 = 1/9. The top path makes it clear that in 1/3 x 1/3 =
1/9 of the trials, two hits in a row will occur. Then, of the 1/9 of the total trials in which two
hits in a row occur, about 1/3 will go on to a third hit, or 1/3 x 1/3 x 1/3 = 1/27. Remember
that we are dealing here with independent events; regardless of whether the player made his
first two shots, the probability is still 1 in 3 on the third shot.

9.2 The addition of probabilities

Back to the Washington Redskins again. You ponder more deeply the possibility of a nasty
day, and you estimate with more discrimination that the probability of snow is .1 and of rain
it is .2 (with .7 of a nice day). Now you wonder: What is the probability of a rainy day or a
nice day?

To find this probability by simulation:

1. Put 7 blue balls (nice day), 1 black ball (snowy day) and 2 gray balls (rainy day) into
a bucket. You want to know the probability of a blue or a gray ball. To find this
probability:

2. Draw one ball and record “yes” if its color is blue or gray, “no” otherwise.

3. Repeat step 1 perhaps 200 times.

4. Find the proportion of “yes” trials.

This procedure certainly will do the job. And simulation may be unavoidable when the situ-
ation gets more complex. But in this simple case, you are likely to see that you can compute
the probability by adding the .7 probability of a nice day and the .2 probability of a rainy
day to get the desired probability. This procedure of formulaic deductive probability theory
is called the addition rule. ## The addition rule

The addition rule applies to mutually exclusive outcomes — that is, the case where if one
outcome occurs, the other(s) cannot occur; one event implies the absence of the other when
events are mutually exclusive. Green and red coats are mutually exclusive if you never wear
more than one coat at a time. If there are only two possible mutually-exclusive outcomes, the
outcomes are complementary. It may be helpful to note that mutual exclusivity equals total
dependence; if one outcome occurs, the other cannot. Hence we write formally that

If𝑃(𝐴 and 𝐵) = 0 then

𝑃(𝐴 or 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
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An outcome and its absence are mutually exclusive, and their probabilities add to unity.

𝑃(𝐴) + 𝑃( 𝐴̂) = 1

Examples include a) rain and no rain, and b) if 𝑃(sales > $1 million) = 0.2, then
𝑃(sales <= $1 million) = 0.8.
As with the multiplication rule, the addition rule can be a useful shortcut. The answer can
always be obtained by simulation, too.

We have so far implicitly assumed that a rainy day and a snowy day are mutually exclusive.
But that need not be so; both rain and snow can occur on the same day; if we take this
possibility into account, we cannot then use the addition rule.

Consider the case in which seven days in ten are nice, one day is rainy, one day is snowy, and
one day is both rainy and snowy. What is the chance that it will be either nice or snowy? The
procedure is just as before, except that some rainy days are included because they are also
snowy.

When A and B are not mutually exclusive — when it is possible that the day might be both
rainy and snowy, or you might wear both red and green coats on the same day, we write (in
the latter case) P(red and green coats) > 0, and the appropriate formula is

𝑃(red or green) = 𝑃(red) + 𝑃(green) − 𝑃(red and green)‵

In this case as in much of probability theory, the simulation for the case in which the events are
not mutually exclusive is no more complex than when they are mutually exclusive; indeed, if
you simulate you never even need to know the concept of mutual exclusivity or inquire whether
that is your situation. In contrast, the appropriate formula for non-exclusivity is more complex,
and if one uses formulas one must inquire into the characteristics of the situation and decide
which formula to apply depending upon the classification; if you classify wrongly and therefore
apply the wrong formula, the result is a wrong answer.

To repeat, the addition rule only works when the probabilities you are adding are mutually
exclusive — that is, when the two cannot occur together.

The multiplication and addition rules are as different from each other as mortar and bricks;
both, however, are needed to build walls. The multiplication rule pertains to a single outcome
composed of two or more elements (e.g. weather, and win-or-lose), whereas the addition rule
pertains to two or more possible outcomes for one element. Drawing from a card deck (with
replacement) provides an analogy: the addition rule is like one draw with two or more possible
cards of interest, whereas the multiplication rule is like two or more cards being drawn with
one particular “hand” being of interest.
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9.3 Theoretical devices for the study of probability

It may help you to understand the simulation approach to estimating composite probabilities
demonstrated in this book if you also understand the deductive formulaic approach. So we’ll
say a bit about it here.

The most fundamental concept in theoretical probability is the list of events that may occur,
together with the probability of each one (often arranged so as to be equal probabilities). This
is the concept that Galileo employed in his great fundamental work in theoretical probability
about four hundred years ago when a gambler asked Galileo about the chances of getting a
nine rather than a ten in a game of three dice (though others such as Cardano had tackled
the subject earlier).1

Galileo wrote down all the possibilities in a tree form, a refinement for mapping out the sample
space.

Galileo simply displayed the events themselves — such as “2,” “4,” and “4,” making up a total
of 10, a specific event arrived at in a specific way. Several different events can lead to a 10
with three dice. If we now consider each of these events, we arrive at the concept of the ways
that a total of 10 can arise. We ask the number of ways that an outcome can and cannot
occur. (See the paragraph above). This is equivalent both operationally and linguistically to
the paths in (say) the quincunx device or Pascal’s Triangle which we shall discuss shortly.

A tree is the most basic display of the paths in a given situation. Each branch of the tree
— a unique path from the start on the left-hand side to the endpoint on the right-hand side
— contains the sequence of all the elements that make up that event, in the order in which
they occur. The right-hand ends of the branches constitute a list of the outcomes. That list
includes all possible permutations — that is, it distinguishes among outcomes by the orders
in which the particular die outcomes occur.

1Here is another example of the confusion on such matters, this one written by Charles Cotton (part-author
of The Compleat Angler) in 1674:

Now six and eight one would think should admit of no difference in advantage with seven,
but if you will rightly consider the case, and be so vain to make trial thereof, you will find
a great advantage in seven over six and eight. How can that be you will say, hath not six,
seven and eight equal chances? For example, in six, quarter deuce and two treys; in eight,
six deuce, cinque trey, and two quarters; and hath not seven three as aforesaid? It is confest;
but pray consider the disadvantage in the doublets, two treys and two quarters, and you will
find that six deuce is sooner thrown than two quarters, and so consequently, cinque Ace or
quarter deuce sooner than two treys: I saw an old rook once take up a young fellow in a tavern,
upon this very score: the bargain was made that the rook should have seven always and the
young gentleman six, and throw continually; agreed to play they went, the rook got the first
day ten pound, the next day the like sum; and so for six days together losing in all threescore
pounds; notwithstanding the gentleman, I am confident, had square dice, and threw them
always himself.

Cited in (Bulmer 1979, 20–21)
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9.4 The Concept of Sample Space

The formulaic approach begins with the idea of sample space, which is the set of all possible
outcomes of the “experiment” or other situation that interests us. Here is a formal definition
from Goldberg (1986, 46):

A sample space S associated with a real or conceptual experiment is a set such
that (1) each element of S denotes an outcome of the experiment, and (2) any
performance of the experiment results in an outcome that corresponds to one and
only one element of S.

Because the sum of the probabilities for all the possible outcomes in a given experimental trial
is unity, the sum of all the events in the sample space (S) = 1.

Early on, people came up with the idea of estimating probabilities by arraying the possibilities
for, and those against, the event occurring. For example, the coin could fall in three ways
— head, tail, or on its side. They then speedily added the qualification that the possibilities
in the list must have an equal chance, to distinguish the coin falling on its side from the
other possibilities (so ignore it). Or, if it is impossible to make the probabilities equal, make
special allowance for inequality. Working directly with the sample space is the method of first
principles. The idea of a list was refined to the idea of sample space, and “for” and “against”
were refined to the “success” and “failure” elements among the total elements.

The concept of sample space raises again the issue of how to estimate the simple probabilities.
While we usually can estimate the probabilities accurately in gambling games because we
ourselves construct the games and therefore control the probabilities that they produce, we
have much less knowledge of the structures that underlie the important problems in life — in
science, business, the stock market, medicine, sports, and so on. We therefore must wrestle
with the issue of what probabilities we should include in our theoretical sample space, or
in our experiments. Often we proceed by choosing as an analogy a physical “model” whose
properties we know and which we consider to be appropriate — such as a gambling game
with coins, dice, cards. This model becomes our idealized setup. But this step makes crystal-
clear that judgment is heavily involved in the process, because choosing the analogy requires
judgment.

A Venn diagram is another device for displaying the elements that make up an event. But
unlike a tree diagram, it does not show the sequence of those elements; rather, it shows the
extent of overlap among various classes of elements. A Venn diagram expresses by areas
(especially rectangular Venn diagrams) the numbers at the end of the branches in a tree.

Pascal’s Triangle is still another device. It aggregates the last permutation branches in the
tree into combinations — that is, without distinguishing by order. It shows analytically (by
tracing them) the various paths that lead to various combinations.
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The study of the mathematics of probability is the study of calculational shortcuts to do what
tree diagrams do. If you don’t care about the shortcuts, then you don’t need the formal
mathematics--though it may improve your mathematical insight (or it may not). The resam-
pling method dispenses not only with the shortcuts but also with the entire counting of points
in the sample space.
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10 Two puzzles and more tools

10.1 Introduction

In the next chapter we will deal with some more involved problems in probability, as a prepara-
tion for statistics, where we use reasoning from probability to draw conclusions about a world
like our own, where variation often appears to be more or less random.

Before we get down to the business of complex probabilistic problems in the next few chapters,
let’s consider a couple of peculiar puzzles. These puzzles allow us to introduce some more of
the key tools in Python for Monte Carlo resampling, and show the power of such simulation
to help solve, and then reason about, problems in probability.

But, before we get to the puzzles, we will need some more elements of Python.

10.2 Selecting elements from arrays with slicing

Note 11: Notebook: Selecting elements by slicing

• Download notebook
• Interact

As you saw in Section 6.6, we do indexing when we put square brackets following a value that
is a container, such as an array. Inside the square brackets we put another value to specify
which elements we want to fetch from the container.

We will use the some_numbers array as our container for indexing:

import numpy as np

some_numbers = np.array([3, 1, 4, 1, 5, 9, 2, 6])

In the indexing expression below, we have the array some_numbers, followed by the value 3
inside the square brackets, telling Python that we want the fourth value from the some_numbers
container.
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# Indexing with an integer inside the square brackets.
some_numbers[3]

np.int64(1)

In the example above, we put an integer (a whole number) inside the square brackets, to
specify the position of the element we want to fetch from the container.

We can also put something called a slice inside the square brackets.

A slice specifies a range of elements to fetch from the container.

We can form a slice with an integer, followed by a colon (:), followed by another integer. The
first integer specifies the start position; this is the position of the first element we want. There
follows a colon. Read the colon as “up to, but not including”. Finally, we have an integer that
gives the stop position. The slice, thus specified, asks Python to give us all the elements from
(including) the start position, up to, but not including the stop position.

For example, here we index with a slice having start of 1 (offset 1 from the start, the position
of the second element). The stop is 5, meaning we should go up to, but not include the
element at position 5 (the sixth element). The result is another array, that has the elements
of some_numbers from positions 1 through 4:

# Indexing with a slice (an expression including a colon).
some_numbers[1:5]

array([1, 4, 1, 5])

In fact, we can omit the value before the colon (the start value), and Python will assume we
mean 0. This indexing expression fetches the elements at position 0 through 3:

# Indexing with a slice that omits the first (start) value. Python assumes 0.
some_numbers[:4]

array([3, 1, 4, 1])

The expression above then means “get all the elements up to (not including) position 4”, or
equivalently, “get the first four elements of the array”.

We can also omit the stop value. Python assumes we mean one past the last position in the
array. This is also the len of the array. By taking this stop value, the slice selects the elements
starting at the start element, through to (including) the last element of the array:
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# Indexing with a slice that omits the last (stop) value. Python assumes
# we mean one past the last position in the array.
some_numbers[3:]

array([1, 5, 9, 2, 6])

The slice in the example above therefore means “get all the elements from position 3 to the
end of the array”.

Actually, we can even omit the start and the stop values, leaving just the colon. As you might
expect, Python assumes 0 as the start, and one past the end as the stop, so the colon on its
own means “return all the elements in the array”. As usual with slicing, we get a new array
with the chosen elements.

# Just the colun, meaning "all the elements in the array".
some_numbers[:]

array([3, 1, 4, 1, 5, 9, 2, 6])

End of notebook: Selecting elements by slicing

selecting_by_slicing starts at Note 11.

10.3 The treasure fleet recovered

As promised, we have now arrived at the first of the probability puzzles.

This is a classic problem in probability:1

1The treasure fleet problem is a restatement of a problem that Joseph Bertrand posed early in the 19th
century.) Here is a variation from (Goldberg 1986, 99):

Three identical boxes each contain two coins. In one box both are pennies, in the second both
are nickels, and in the third there is one penny and one nickel.
A man chooses a box at random and takes out a coin. If the coin is a penny, what is the
probability that the other coin in the box is also a penny?
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A Spanish treasure fleet of three ships was sunk at sea off Mexico. One ship had a
chest of gold forward and another aft, another ship had a chest of gold forward and
a chest of silver aft, while a third ship had a chest of silver forward and another
chest of silver aft. Divers just found one of the ships and a chest of gold in it, but
they don’t know whether it was from forward or aft. They are now taking bets
about whether the other chest found on the same ship will contain silver or gold.
What are fair odds?

These are the logical steps one may distinguish in arriving at a correct answer with deductive
logic (portrayed in Figure 10.1).

1. Postulate three ships — Ship I with two gold chests (G-G), ship II with one gold and one
silver chest (G-S), and ship III with S-S. (Choosing notation might well be considered
one or more additional steps.)

2. Assert equal probabilities of each ship being found.

3. Step 2 implies equal probabilities of being found for each of the six chests.

4. Fact: Diver finds a chest of gold.

5. Step 4 implies that S-S ship III was not found; hence remove it from subsequent analysis.

6. Three possibilities: 6a) Diver found chest I-Ga, 6b) diver found I-Gb, 6c) diver found
II-Gc.

From step 2, the cases a, b, and c in step 6 have equal probabilities.

7. If possibility 6a is the case, then the other chest is I-Gb; the comparable statements for
cases 6b and 6c are I-Ga and II-S.

8. From steps 6 and 7: From equal probabilities of the three cases, and no other possible
outcome, 𝑃 (6𝑎) = 1/3, 𝑃(6𝑏) = 1/3, 𝑃(6𝑐) = 1/3.

9. So 𝑃(𝐺) = 𝑃 (6𝑎) + 𝑃(6𝑏) = 1/3 + 1/3 = 2/3.

See Figure 10.1.

The following simulation arrives at the correct answer.

1. Write “Gold” on three pieces of paper and “Silver” on three pieces of paper. These
represent the chests.

2. Get three buckets each with two pieces of paper. Each bucket represents a ship, each
piece of paper represents a chest in that ship. One bucket has two pieces of paper with
“Gold” written on them; one has pieces of paper with “Gold” and “Silver”, and one has
“Silver” and “Silver”.

3. Choose a bucket at random, to represent choosing a ship at random.
4. Shuffle the pieces of paper in the bucket and pick one, to represent choosing the first

chest from that ship at random.
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Figure 10.1: Ships with Gold and Silver

5. If the piece of paper says “Silver”, the first chest we found in this ship was silver, and
we stop the trial and make no further record. If “Gold”, continue.

6. Get the second piece of paper from the bucket, representing the second chest on the
chosen ship. Record whether this was “Silver” or “Gold” on the scoreboard.

7. Repeat steps (3 - 6) many times, and calculate the proportion of “Gold”s on the score-
board. (The answer should be about 2

3 .)

Here is a notebook simulation with Python:

Note 12: Notebook: Ships with gold and silver

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

# The 3 buckets. Each bucket represents a ship. Each has two chests.
bucket1 = ['Gold', 'Gold'] # Chests in first ship.
bucket2 = ['Gold', 'Silver'] # Chests in second ship.
bucket3 = ['Silver', 'Silver'] # Chests in third ship.

# For each trial, we will have one of three states:
#
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# 1. When opening the first chest, it did not contain gold.
# We will reject these trials, since they do not match our
# experiment description.
# 2. Gold was found in the first and the second chest.
# 3. Gold was found in the first, but silver in the second chest.
#
# We need a placeholder value for all trials, and will make that
# "No gold in chest 1, chest 2 never opened".
second_chests = np.repeat(['No gold in chest 1, chest 2 never opened'], 10000)

for i in range(10000):
# Select a ship at random from the three ships.
ship_no = rnd.choice([1, 2, 3])
# Get the chests from this ship (represented by a bucket).
if ship_no == 1:

bucket = bucket1
if ship_no == 2:

bucket = bucket2
if ship_no == 3:

bucket = bucket3

# We shuffle the order of the chests in this ship, to simulate
# the fact that we don't know which of the two chests we have
# found first, forward or aft.
shuffled = rnd.permuted(bucket)

if shuffled[0] == 'Gold': # We found a gold chest first.
# Store whether the Second chest was silver or gold.
second_chests[i] = shuffled[1]

# End loop, go back to beginning.

# Number of times we found gold in the second chest.
n_golds = np.sum(second_chests == 'Gold')
# Number of times we found silver in the second chest.
n_silvers = np.sum(second_chests == 'Silver')
# As a ratio of golds to all second chests (where the first was gold).
print(n_golds / (n_golds + n_silvers))

0.6625368731563421
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End of notebook: Ships with gold and silver

gold_silver_ships starts at Note 12.

In the code above, we have first chosen the ship number at random, and then used a set of if
... statements to get the pair of chests corresponding to the given ship. There are simpler
and more elegant ways of writing this code, but they would need some Python features that
we haven’t covered yet.2

10.4 Back to Boolean arrays

The code above implements the procedure we might well use if we were simulating the problem
physically. We do a trial, and we record the result. We do this on a piece of paper if we are
doing a physical simulation, and in the second_chests array in code.

Finally we tally up the results. If we are doing a physical simulation, we go back over the
all the trial results and counting up the “Gold” and “Silver” outcomes. In code we use the
comparisons == 'Gold' and == 'Silver' to find the trials of interest, and then count them
up with np.sum.

2Although we have used multiple if statements to set the chests for each ship in the code for the ship problem,
it would have been more elegant to store the definitions of ships and chests as a list of lists. We haven’t
covered these, but to give you a taste of what that would look like, for a single trial.

import numpy as np
rnd = np.random.default_rng()

# We define the ships and their respective chests, using a list of lists.
# Remember, list has elements, where the elements can be any type of value.
# In this case, the elements in the list are themselves - lists.
ship_chests = [ # Create list, with lists as elements.

['Gold', 'Gold'], # List for ship 1; element 0 of the list of lists.
['Gold', 'Silver'], # List for ship 2; element 1 of the list of lists.
['Silver', 'Silver'] # Ship 3; element 2.

]
# Choose a ship at random.
ship_no = rnd.choice([0, 1, 2])

# Get the corresponding chests for this ship.
chests = ship_chests[ship_no]
chests

['Gold', 'Silver']
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Boolean (logical) arrays are a fundamental tool in Python, and we will use them in nearly all
our simulations.

Here is a remind of how those arrays work.

First, let’s slice out the first 10 values of the second_chests trial-by-trial results tally from
the simulation above:

# Get values at positions 0 through 9 (up to, but not including position 10)
first_10_chests = second_chests[:10]
first_10_chests

array(['Silver', 'No gold in chest 1, chest 2 never opened',
'No gold in chest 1, chest 2 never opened', 'Gold', 'Gold',
'No gold in chest 1, chest 2 never opened', 'Gold', 'Gold',
'No gold in chest 1, chest 2 never opened', 'Gold'], dtype='<U40')

Before we started the simulation, we set second_chests to contain 10,000 strings, where each
string was “No gold in chest 1, chest 2 never opened”. In the simulation, we check whether
there was gold in the first chest, and, if not, we don’t change the value in second_chest, and
the value remains as “No gold in chest 1, chest 2 never opened”.

Only if there was gold in the first chest, do we go on to check whether the second chest contains
silver or gold. Therefore, we only set a new value in second_chests where there was gold in
the first chest.

Now let’s show the effect of running a comparison on first_10_chests:

were_gold = (first_10_chests == 'Gold')
were_gold

array([False, False, False, True, True, False, True, True, False,
True])

Parentheses and Boolean comparisons

Notice the round brackets (parentheses) around (first_10_chests == 'Gold'). In this
particular case, we would get the same result without the parentheses, so the paretheses
are optional— although see below for an example where the they are not optional. In
general, you will see we put parentheses around all expressions that generate Boolean
arrays, and we recommend you do too. It is good habit to get into, to make it clear that
this is an expression that generates a value.
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The == 'Gold' comparison is asking a question. It is asking that question of an array, and
the array contains multiple values. NumPy treats this comparison as asking the question of
each element in the array. We get an answer for the question for each element. The answer for
position 0 is True if the element at position 0 is equal to 'Gold' and False otherwise, and so
on, for positions 1, 2 and so on. We started with 10 strings. After the comparison == 'Gold'
we have 10 Boolean values, where a Boolean value can either be True or False.

Now we have an array with True for the “Gold” results and False otherwise, we can count
the number of “Gold” results by using np.sum on the array. As you remember (Section 5.14)
np.sum counts True as 1 and False as 0, so the sum of the Boolean array is just the number
of True values in the array — the count that we need.

# The number of True values — so the number of "Gold" chests.
np.sum(were_gold)

np.int64(5)

10.5 Boolean arrays and another take on the ships problem

If we are doing a physical simulation, we usually want to finish up all the work for the trial
during the trial, so we have one outcome from the trial. This makes it easier to tally up the
results in the end.

We have no such constraint when we are using code, so it is sometimes easier to record several
results from the trial, and do the final combinations and tallies at the end. We will show you
what we mean with a slight variation on the two-ships code you saw above.

Note 13: Notebook: Another approach to ships with gold and silver

• Download notebook
• Interact

Notice that the first part of the code is identical to the first approach to this problem. There
are two key differences — see the comments for an explanation.

import numpy as np
rnd = np.random.default_rng()
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# The 3 buckets, each representing two chests on a ship.
# As before.
bucket1 = ['Gold', 'Gold'] # Chests in first ship.
bucket2 = ['Gold', 'Silver'] # Chests in second ship.
bucket3 = ['Silver', 'Silver'] # Chests in third ship.

# Here is where the difference starts. We are now going to fill in
# the result for the first chest _and_ the result for the second chest.
#
# Later we will fill in all these values, so the string we put here
# does not matter.

# Whether the first chest was Gold or Silver.
first_chests = np.repeat(['To be announced'], 10000)
# Whether the second chest was Gold or Silver.
second_chests = np.repeat(['To be announced'], 10000)

for i in range(10000):
# Select a ship at random from the three ships.
# As before.
ship_no = rnd.choice([1, 2, 3])
# Get the chests from this ship.
# As before.
if ship_no == 1:

bucket = bucket1
if ship_no == 2:

bucket = bucket2
if ship_no == 3:

bucket = bucket3

# As before.
shuffled = rnd.permuted(bucket)

# Here is the big difference - we store the result for the first and second
# chests.
first_chests[i] = shuffled[0]
second_chests[i] = shuffled[1]

# End loop, go back to beginning.

# We will do the calculation we need in the next cell. For now
# just display the first 10 values.
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ten_first_chests = first_chests[:10]
print('The first 10 values of "first_chests:', ten_first_chests)

The first 10 values of "first_chests: ['Gold' 'Silver' 'Silver' 'Gold' 'Gold' 'Silver' 'Gold' 'Gold' 'Silver'
'Gold']

ten_second_chests = second_chests[:10]
print('The first 10 values of "second_chests', ten_second_chests)

The first 10 values of "second_chests ['Silver' 'Gold' 'Silver' 'Gold' 'Gold' 'Silver' 'Gold' 'Gold' 'Silver'
'Gold']

In this variant, we recorded the type of first chest for each trial (“Gold” or “Silver”), and the
type of second chest of the second chest (“Gold” or “Silver”).

We would like to count the number of times there was “Gold” in the first chest
and “Gold” in the second.

10.6 Combining Boolean arrays

We can do the count we need by combining the Boolean arrays with the & operator. & combines
Boolean arrays with a logical and. Logical and is a rule for combining two Boolean values, where
the rule is: the result is True if the first value is True and the second value if True.

Here we use the & operator to combine some Boolean values on the left and right of the
operator:

True & True # Both are True, so result is True

True

True & False # At least one of the values is False, so result is False

False

False & True # At least one of the values is False, so result is False

False
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False & False # At least one (in fact both) are False, result is False.

False

Note 14: & and and in Python

In fact Python has another operation to apply this logical and operation to values — the
and operator:

print(True and True)

True

print(True and False)

False

print(False and True)

False

print(False and False)

False

You will see this and operator often in Python code, but it does not work well when
combining Numpy arrays, so we will use the similar & operator, that does work on arrays.

Above you saw that the == operator (as in == 'Gold'), when applied to arrays, asks the
question of every element in the array.

First make the Boolean arrays.

ten_first_gold = (ten_first_chests == 'Gold')
print("Ten first == 'Gold'", ten_first_gold)

Ten first == 'Gold' [ True False False True True False True True False True]
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ten_second_gold = (ten_second_chests == 'Gold')
print("Ten second == 'Gold'", ten_second_gold)

Ten second == 'Gold' [False True False True True False True True False True]

Now let us use & to combine Boolean arrays:

ten_both = (ten_first_gold & ten_second_gold)
ten_both

array([False, False, False, True, True, False, True, True, False,
True])

Notice that Python does the comparison elementwise — element by element.

You saw that when we did second_chests == 'Gold' this had the effect of asking the ==
'Gold' question of each element, so there will be one answer per element in second_chests.
In that case there was an array to the left of == and a single value to the right. We were
comparing an array to a value.

Here we are asking the & question of ten_first_gold and ten_second_gold. Here there is
an array to the left and an array to the right. We are asking the & question 10 times, but the
first question we are asking is:

# First question, giving first element of result.
(ten_first_gold[0] & ten_second_gold[0])

np.False_

The second question is:

# Second question, giving second element of result.
(ten_first_gold[1] & ten_second_gold[1])

np.False_

and so on. We have ten elements on each side, and 10 answers, giving an array (ten_both)
of 10 elements. Each element in ten_both is the answer to the & question for the elements at
the corresponding positions in ten_first_gold and ten_second_gold.

We could also create the Boolean arrays and do the & operation all in one step, like this:
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ten_both = (ten_first_chests == 'Gold') & (ten_second_chests == 'Gold')
ten_both

array([False, False, False, True, True, False, True, True, False,
True])

Parentheses, arrays and comparisons

Again you will notice the round brackets (parentheses) around (ten_first_chests ==
'Gold') and (ten_second_chests == 'Gold'). Above, you saw us recommend you
always use paretheses around Boolean expressions like this. The parentheses make the
code easier to read — but be careful — in this case, we actually need the parentheses to
make Python do what we want; see the footnote for more detail.3

Remember, we wanted the answer to the question: how many trials had “Gold” in the first
chest and “Gold” in the second. We can answer that question for the first 10 trials with
np.sum:

n_ten_both = np.sum(ten_both)
n_ten_both

np.int64(5)

We can answer the same question for all the trials, in the same way:

3We warned that we need parentheses around our & expressions to get the result we want. We would add the
parentheses in any case, as good practice, but here we also need the parentheses in (ten_first_chests ==
'Gold') & (ten_second_chests == 'Gold'). Remember operator precedence; for example, the multiply
operator * has higher precedence than the operator +, so 3 + 5 * 2 is equal to 3 + (5 * 2) = 13. If we
want to do addition before multiplication, we use parentheses to tell Python the order it should use: (3 +
5) * 2 = 16.

The same applies for the two operators == and & here. In fact & has a higher precedence
than ==. This means that, if we write the expression without parentheses — ten_first_chests ==
'Gold' & ten_second_chests == 'Gold' — because of operator precedence, Python takes this to mean
ten_first_chests == ('Gold' & ten_second_chests) == 'Gold'. Python does not know what to do
with 'Gold' & ten_second_chests and generates an error of form 'bitwise_and' not supported for the
input types. The error tells you that Python does not know how to apply & ('bitwise_and') to the string
'Gold’ and the array ten_second_chests.

This is the same error you would get for running the code 'Gold' & ten_second_chests on its own.
The point to take away is, that when you are using & to combine Boolean arrays in Python, remember

operator precedence, and, when in doubt, put parentheses around the expressions on either side of &, as
here.
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first_gold = (first_chests == 'Gold')
second_gold = (second_chests == 'Gold')
n_both_gold = np.sum(first_gold & second_gold)
n_both_gold

np.int64(3369)

We could also do the same calculation all in one line:

# Notice the parentheses - we need these - see above.
n_both_gold = np.sum((first_chests == 'Gold') & (second_chests == 'Gold'))
n_both_gold

np.int64(3369)

We can then count all the ships where the first chest was gold:

n_first_gold = np.sum(first_chests == 'Gold')
n_first_gold

np.int64(5085)

The final calculation is the proportion of second chests that are gold, given the first chest was
also gold:

p_g_given_g = n_both_gold / n_first_gold
p_g_given_g

np.float64(0.6625368731563421)

Of course we won’t get exactly the same results from the two simulations, in the same way
that we won’t get exactly the same results from any two runs of the same simulation, because
of the random values we are using. But the logic for the two simulations are the same, and we
are doing many trials (10,000), so the results will be very similar.

End of notebook: Another approach to ships with gold and silver

gold_silver_booleans starts at Note 13.
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10.7 The Monty Hall problem

The Monty Hall Problem is a puzzle in probability that is famous for its deceptive simplicity.
It has its own long Wikipedia page: https://en.wikipedia.org/wiki/Monty_Hall_problem.

Here is the problem in the form it is best known; a letter to the columnist Marilyn vos Savant,
published in Parade Magazine (1990):

Suppose you’re on a game show, and you’re given the choice of three doors. Behind
one door is a car, behind the others, goats. You pick a door, say #1, and the host,
who knows what’s behind the doors, opens another door, say #3, which has a goat.
He says to you, “Do you want to pick door #2?” Is it to your advantage to switch
your choice of doors?

In fact the first person to propose (and solve) this problem was Steve Selvin, a professor of
public health at the University of California, Berkeley (Selvin 1975).

Most people, including at least one of us, your humble authors, quickly come to the wrong
conclusion. The most common but incorrect answer is that it will make no difference if you
switch doors or stay with your original choice. The obvious intuition is that, after Monty
opens his door, there are two doors that might have the car behind them, and therefore, there
is a 50% chance it will be behind any one of the two. It turns out that answer is wrong; you
will double your chances of winning by switching doors. Did you get the answer right?

If you got the answer wrong, you are in excellent company. As you can see from the commentary
in Savant (1990), many mathematicians wrote to Parade magazine to assert that the (correct)
solution was wrong. Paul Erdős was one of the most famous mathematicians of the 20th
century; he could not be convinced of the correct solution until he had seen a computer
simulation (Vazsonyi 1999), of the type we will do below.

To simulate a trial of this problem, we need to select a door at random to house the car, and
another door at random, to be the door the contestant chooses. We number the doors 1, 2
and 3. Now we need two random choices from the options 1, 2 or 3, one for the door with the
car, the other for the contestant door. To chose a door for the car, we could throw a die, and
chose door 1 if the die shows 1 or 4, door 2 if the die shows 2 or 5, and door 3 for 3 or 6. Then
we throw the die again to chose the contestant door.

But throwing dice is a little boring; we have to find the die, then throw it many times, and
record the results. Instead we can ask the computer to chose the doors at random.

For this simulation, let us do 25 trials. We ask the computer to create two sets of 25 random
numbers from 1 through 3. The first set is the door with the car behind it (“Car door”). The
second set have the door that the contestant chose at random (“Our door”). We put these in
a table, and make some new, empty columns to fill in later. The first new column is “Monty
opens”. In due course, we will use this column to record the door that Monty Hall will open on
this trial. The last two columns express the outcome. The first is “Stay wins”. This has “Yes”
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if we win on this trial by sticking to our original choice of door, and “No” otherwise. The last
column is “Switch wins”. This has “Yes” if we win by switching doors, and “No” otherwise.
See table Table 10.1).

Table 10.1: 25 simulations of the Monty Hall problem

Car door Our door Monty opens Stay wins Switch wins
1 3 3
2 3 1
3 1 3
4 1 1
5 2 3
6 2 1
7 2 2
8 1 3
9 1 2
10 3 1
11 2 2
12 3 2
13 2 2
14 3 1
15 1 2
16 2 1
17 3 3
18 3 2
19 1 1
20 3 2
21 2 2
22 3 1
23 3 1
24 1 1
25 2 3

In the first trial in Table 10.1), the computer selected door 3 for car, and door 3 for the
contestant. Now Monty must open a door, and he cannot open our door (door 3) so he has
the choice of opening door 1 or door 2; he chooses randomly, and opens door 2. On this trial,
we win if we stay with our original choice, and we lose if we change to the remaining door,
door 1.

Now we go the second trial. The computer chose door 3 for the car, and door 1 for our choice.
Monty cannot choose our door (door 1) or the door with the car behind it (door 3), so he must
open door 2. Now if we stay with our original choice, we lose, but if we switch, we win.
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You may want to print out table Table 10.1, and fill out the blank columns, to work through
the logic.

After doing a few more trials, and some reflection, you may see that there are two different
situations here: the situation when our initial guess was right, and the situation where our
initial guess was wrong. When our initial guess was right, we win by staying with our original
choice, but when it was wrong, we always win by switching. The chance of our initial guess
being correct is 1/3 (one door out of three). So the chances of winning by staying are 1/3,
and the chances of winning by switching are 2/3. But remember, you don’t need to follow this
logic to get the right answer. As you will see below, the resampling simulation shows us that
the Switch strategy wins.

Table 10.2 is a version of table Table 10.1 for which we have filled in the blank columns using
the logic above.

Table 10.2: 25 simulations of the Monty Hall problem, filled out

Car door Our door Monty opens Stay wins Switch wins
1 3 3 1 Yes No
2 3 1 2 No Yes
3 1 3 2 No Yes
4 1 1 2 Yes No
5 2 3 1 No Yes
6 2 1 3 No Yes
7 2 2 3 Yes No
8 1 3 2 No Yes
9 1 2 3 No Yes
10 3 1 2 No Yes
11 2 2 1 Yes No
12 3 2 1 No Yes
13 2 2 1 Yes No
14 3 1 2 No Yes
15 1 2 3 No Yes
16 2 1 3 No Yes
17 3 3 2 Yes No
18 3 2 1 No Yes
19 1 1 2 Yes No
20 3 2 1 No Yes
21 2 2 1 Yes No
22 3 1 2 No Yes
23 3 1 2 No Yes
24 1 1 2 Yes No
25 2 3 1 No Yes
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The proportion of times “Stay” wins in these 25 trials is 0.36. The proportion of times “Switch”
wins is 0.64; the Switch strategy wins about twice as often as the Stay strategy.

10.8 Monty Hall with Python

Now you have seen what the results might look like for a physical simulation, you can exercise
some of your newly-strengthened Python muscles to do the simulation with code.

Note 15: Notebook: The Monty Hall problem

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

The Monty Hall problem has a slightly complicated structure, so we will start by looking at
the procedure for one trial. When we have that clear, we will put that procedure into a for
loop for the simulation.

Let’s start with some variables. Let’s call the door I choose my_door.

We choose that door at random from a sequence of all possible doors. Call the doors 1, 2 and
3 from left to right.

# List of doors to chose from.
doors = [1, 2, 3]

# We choose one door at random.
my_door = rnd.choice(doors)

# Show the result
my_door

np.int64(2)

We choose one of the doors to be the door with the car behind it:
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# One door at random has the car behind it.
car_door = rnd.choice(doors)

# Show the result
car_door

np.int64(2)

Now we need to decide which door Monty will open.

By our set up, Monty cannot open our door (my_door). By the set up, he has not opened (and
cannot open) the door with the car behind it (car_door).

my_door and car_door might be the same.

So, to get Monty’s choices, we want to take all doors (doors) and remove my_door and
car_door. That leaves the door or doors Monty can open.

Here are the doors Monty cannot open. Remember, a third of the time my_door and car_door
will be the same, so we will include the same door twice, as doors Monty can’t open.

cant_open = [my_door, car_door]
cant_open

[np.int64(2), np.int64(2)]

We want to find the remaining doors from doors after removing the doors named in
cant_open.

NumPy has a good function for this, called np.setdiff1d. It calculates the set difference
between two sequences, such as arrays.

The set difference between two sequences is the members that are in the first sequence, but
are not in the second sequence. Here are a few examples of this set difference function in
NumPy.

Notice that we are using lists as the input (first and second) sequences here. We can use lists
or arrays or any other type of sequence in Python. (See Section 7.3.2 for an introduction to
lists).

Numpy functions like np.setdiff1d always return an array.

# Members in [1, 2, 3] that are *not* in [1]
# 1, 2, 3, removing 1, if present.
np.setdiff1d([1, 2, 3], [1])
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array([2, 3])

# Members in [1, 2, 3] that are *not* in [2, 3]
# 1, 2, 3, removing 2 and 3, if present.
np.setdiff1d([1, 2, 3], [2, 3])

array([1])

# Members in [1, 2, 3] that are *not* in [2, 2]
# 1, 2, 3, removing 2 and 2 again, if present.
np.setdiff1d([1, 2, 3], [2, 2])

array([1, 3])

This logic allows us to choose the doors Monty can open:

montys_choices = np.setdiff1d(doors, [my_door, car_door])
montys_choices

array([1, 3])

Notice that montys_choices will only have one element left when my_door and car_door were
different, but it will have two elements if my_door and car_door were the same.

Let’s play out those two cases:

my_door = 1 # For example.
car_door = 2 # For example.
# Monty can only choose door 3 now.
montys_choices = np.setdiff1d(doors, [my_door, car_door])
montys_choices

array([3])

my_door = 1 # For example.
car_door = 1 # For example.
# Monty can choose either door 2 or door 3.
montys_choices = np.setdiff1d(doors, [my_door, car_door])
montys_choices
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array([2, 3])

If Monty can only choose one door, we’ll take that. Otherwise we’ll chose a door at random
from the two doors available.

if len(montys_choices) == 1: # Only one door available.
montys_door = montys_choices[0] # Take the first (of 1!).

else: # Two doors to choose from:
# Choose at random.
montys_door = rnd.choice(montys_choices)

montys_door

np.int64(2)

In fact, we can avoid that if len( check for the number of doors, because rnd.choice will
also work on a sequence of length 1 — in that case, it always returns the single element in the
sequence, like this:

# rnd.choice on sequence with single element - always returns that element.
rnd.choice([2])

np.int64(2)

That means we can simplify the code above to:

# Choose single door left to choose, or door at random if two.
montys_door = rnd.choice(montys_choices)
montys_door

np.int64(3)

Now we know Monty’s door, we can identify the other door, by removing our door, and Monty’s
door, from the available options:

remaining_doors = np.setdiff1d(doors, [my_door, montys_door])
# There is only one remaining door, take that.
other_door = remaining_doors[0]
other_door
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np.int64(2)

The logic above gives us the full procedure for one trial.

my_door = rnd.choice(doors)
car_door = rnd.choice(doors)
# Which door will Monty open?
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# Choose single door left to choose, or door at random if two.
montys_door = rnd.choice(montys_choices)
# Now find the door we'll open if we switch.
remaining_doors = np.setdiff1d(doors, [my_door, montys_door])
# There is only one door left.
other_door = remaining_doors[0]
# Calculate the result of this trial.
if my_door == car_door:

stay_wins = True
if other_door == car_door:

switch_wins = True

All that remains is to put that trial procedure into a loop, and collect the results as we repeat
the procedure many times.

# Arrays to store the results for each trial.
stay_wins = np.repeat([False], 10000)
switch_wins = np.repeat([False], 10000)

# A list of doors to chose from.
doors = [1, 2, 3]

for i in range(10000):
# You will recognize the below as the single-trial procedure above.
my_door = rnd.choice(doors)
car_door = rnd.choice(doors)
# Which door will Monty open?
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# Choose single door left to choose, or door at random if two.
montys_door = rnd.choice(montys_choices)
# Now find the door we'll open if we switch.
remaining_doors = np.setdiff1d(doors, [my_door, montys_door])
# There is only one door left.
other_door = remaining_doors[0]
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# Calculate the result of this trial.
if my_door == car_door:

stay_wins[i] = True
if other_door == car_door:

switch_wins[i] = True

p_for_stay = np.sum(stay_wins) / 10000
p_for_switch = np.sum(switch_wins) / 10000

print('p for stay:', p_for_stay)

p for stay: 0.3326

print('p for switch:', p_for_switch)

p for switch: 0.6674

We can also follow the same strategy as we used for the second implementation of the two-ships
problem (Section 10.5).

Here, as in the second two-ships implementation, we do not calculate the trial results
(stay_wins, switch_wins) in each trial. Instead, we store the doors for each trial, and then
use Boolean arrays to calculate the results for all trials, at the end.

# Instead of storing the trial results, we store the doors for each trial.
my_doors = np.zeros(10000)
car_doors = np.zeros(10000)
other_doors = np.zeros(10000)

doors = [1, 2, 3]

for i in range(10000):
my_door = rnd.choice(doors)
car_door = rnd.choice(doors)
# Which door will Monty open?
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# Choose single door left to choose, or door at random if two.
montys_door = rnd.choice(montys_choices)
# Now find the door we'll open if we switch.
remaining_doors = np.setdiff1d(doors, [my_door, montys_door])
# There is only one door left.
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other_door = remaining_doors[0]

# Store the doors we chose.
my_doors[i] = my_door
car_doors[i] = car_door
other_doors[i] = other_door

# Now - at the end of all the trials, we use Boolean arrays to calculate the
# results.
stay_wins = my_doors == car_doors
switch_wins = other_doors == car_doors

p_for_stay = np.sum(stay_wins) / 10000
p_for_switch = np.sum(switch_wins) / 10000

print('p for stay:', p_for_stay)

p for stay: 0.3374

print('p for switch:', p_for_switch)

p for switch: 0.6626

10.8.1 Insight from the Monty Hall simulation

The code simulation gives us an estimate of the right answer, but it also forces us to set out
the exact mechanics of the problem. For example, by looking at the code, we see that we can
calculate “stay_wins” with this code alone:

# Just choose my door and the car door for each trial.
my_doors = np.zeros(10000)
car_doors = np.zeros(10000)
doors = [1, 2, 3]

for i in range(10000):
my_doors[i] = rnd.choice(doors)
car_doors[i] = rnd.choice(doors)

# Calculate whether I won by staying.
stay_wins = my_doors == car_doors
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p_for_stay = np.sum(stay_wins) / 10000

print('p for stay:', p_for_stay)

p for stay: 0.3244

This calculation, on its own, tells us the answer, but it also points to another insight —
whatever Monty does with the doors, it doesn’t change the probability that our initial guess
is right, and that must be 1 in 3 (0.333). If the probability of stay_win is 1 in 3, and we only
have one other door to switch to, the probability of winning after switching must be 2 in 3
(0.666).

10.8.2 Simulation and a variant of Monty Hall

You have seen that you can avoid the silly mistakes that many of us make with probability —
by asking the computer to tell you the result before you start to reason from first principles.

As an example, consider the following variant of the Monty Hall problem.

The set up to the problem has us choosing a door (my_door above), and then Monty opens
one of the other two doors.

Sometimes (in fact, 2/3 of the time) there is a car behind one of Monty’s doors. We’ve obliged
Monty to open the other door, and his choice is forced.

When his choice was not forced, we had Monty choose the door at random.

For example, let us say we chose door 1.

Let us say that the car is also under door 1.

Monty has the option of choosing door 2 or door 3, and he chooses randomly between them.

my_door = 1 # We chose door 1 at random.
car_door = 1 # This trial, by chance, the car door is 1.
# Monty is left with doors 2 and 3 to choose from.
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# He chooses randomly.
montys_door = rnd.choice(montys_choices)
# Show the result
montys_door

np.int64(2)
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Now — let us say we happen to know that Monty is rather lazy, and he will always choose the
left-most (lower-numbered) door of the two options.

In the previous example, Monty had the option of choosing door 2 and 3. In this new scenario,
we know that he will always choose door 2 (the left-most door).

my_door = 1 # We chose door 1 at random.
car_door = 1 # This trial, by chance, the car door is 1.
# Monty is left with doors 2 and 3 to choose from.
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# He chooses the left-most door, always.
montys_door = montys_choices[0]
# Show the result
montys_door

np.int64(2)

It feels as if we have more information about where the car is, when we know this. Consider
the situation where we have chosen door 1, and Monty opens door 3. We know that he would
have preferred to open door 2, if he was allowed. We therefore know he wasn’t allowed to open
door 2, and that means the car is definitely under door 2.

my_door = 1 # We chose door 1 at random.
car_door = 2 # This trial, by chance, the car door under door 2.
# Monty is left with door 3 only to choose from.
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# He chooses the left-most door, always. But in this case, the left-most
# available door is 3 (he can't choose 2, it is the car_door).
# Notice the doors were in order, so the left-most door is the first door
# in the array.
montys_door = montys_choices[0]
# Show the result
montys_door

np.int64(3)

To take that into account, we might try a different strategy. We will stick to our own choice
if Monty has chosen the left-most of the two doors he had available to him, because he might
have chosen that door because there was a car underneath the other door, or because there
was a car under neither, but he preferred the left door. But, if Monty chooses the right-most
of the two-doors available to him, we will switch from our own choice to the other (unopened)
door, because we can be sure that the car is under the other (unopened) door.
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Call this the “switch if Monty chooses right door” strategy, or “switch if right” for short.

Can you see quickly whether this will be better than the “always stay” strategy? Will it be
better than the “always switch” strategy? Take a moment to think it through, and write down
your answers.

If you can quickly see the answer to both questions — well done — but, are you sure you are
right?

We can test by simulation.

For our test of the “switch is right” strategy, we can tell if one door is to the right of another
door by comparison; higher numbers mean further to the right: 2 is right of 1, and 3 is right
of 2.

# Door 3 is right of door 1.
3 > 1

True

# A test of the switch-if-right strategy.
# The car doors.
car_doors = np.zeros(10000)
# The door we chose using the strategy.
strategy_doors = np.zeros(10000)

doors = [1, 2, 3]

for i in range(10000):
my_door = rnd.choice(doors)
car_door = rnd.choice(doors)
# Which door will Monty open?
montys_choices = np.setdiff1d(doors, [my_door, car_door])
# Choose Monty's door from the remaining options.
# This time, he always prefers the left door.
montys_door = montys_choices[0]
# Now find the door we'll open if we switch.
remaining_doors = np.setdiff1d(doors, [my_door, montys_door])
# There is only one door remaining - but is Monty's door
# to the right of this one? Then Monty had to shift.
other_door = remaining_doors[0]
if montys_door > other_door:

# Monty's door was the right-hand door, the car is under the other one.
strategy_doors[i] = other_door
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else: # We stick with the door we first thought of.
strategy_doors[i] = my_door

# Store the car door for this trial.
car_doors[i] = car_door

strategy_wins = strategy_doors == car_doors

p_for_strategy = np.sum(strategy_wins) / 10000

print('p for strategy:', p_for_strategy)

p for strategy: 0.6641

We find that the “switch-if-right” has around the same chance of success as the “always-switch”
strategy — of about 66.6%, or 2 in 3. Were your initial answers right? Now you’ve seen the
result, can you see why it should be so? It may not be obvious — the Monty Hall problem is
deceptively difficult. But our case here is that the simulation first gives you an estimate of the
correct answer, and then, gives you a good basis for thinking more about the problem. That
is:

• simulation is useful for estimation and
• simulation is useful for reflection.

End of notebook: The Monty Hall problem

monty_hall starts at Note 15.

10.9 Why use simulation?

Doing these simulations has two large benefits. First, it gives us the right answer, saving us
from making a mistake. Second, the process of simulation forces us to think about how the
problem works. This can give us better understanding, and make it easier to reason about the
solution.

We will soon see that these same advantages also apply to reasoning about statistics.
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11 Probability Theory, Part 2: Compound
Probability

11.1 Introduction

In this chapter we will deal with what are usually called “probability problems” rather than
the “statistical inference problems” discussed in later chapters. The difference is that for
probability problems we begin with a knowledge of the properties of the universe with which
we are working. (See Section 8.9 on the definition of resampling.)

We start with some basic problems in probability. To make sure we do know the properties
of the universe we are working with, we start with poker, and a pack of cards. Working with
some poker problems, we rediscover the fundamental distinction between sampling with and
without replacement.

11.2 Introducing a poker problem: one pair (two of a kind)

What is the chance that the first five cards chosen from a deck of 52 (bridge/poker) cards will
contain two (and only two) cards of the same denomination (two 3’s for example)? (Please
forgive the rather sterile unrealistic problems in this and the other chapters on probability.
They reflect the literature in the field for 300 years. We’ll get more realistic in the statistics
chapters.)

We shall estimate the odds the way that gamblers have estimated gambling odds for thousands
of years. First, check that the deck is a standard deck and is not missing any cards. (Overlook-
ing such small but crucial matters often leads to errors in science.) Shuffle thoroughly until
you are satisfied that the cards are randomly distributed. (It is surprisingly hard to shuffle
well.) Then deal five cards, and mark down whether the hand does or does not contain a pair
of the same denomination.

At this point, we must decide whether three of a kind, four of a kind or two pairs meet our
criterion for a pair. Since our criterion is “two and only two,” we decide not to count them.

Then replace the five cards in the deck, shuffle, and deal again. Again mark down whether
the hand contains one pair of the same denomination. Do this many times. Then count the
number of hands with one pair, and figure the proportion (as a percentage) of all hands.
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Table 11.1 has the results of 25 hands of this procedure.

Table 11.1: Results of 25 hands for the problem “one pair”

Hand Card 1 Card 2 Card 3 Card 4 Card 5 One pair?
1 King � King � Queen � 10 � 6 � Yes
2 8 � Ace � 4 � 10 � 3 � No
3 4 � 5 � Ace � Queen � 10 � No
4 3 � Ace � 5 � 3 � Jack � Yes
5 6 � King � 6 � 3 � 3 � No
6 Queen � 7 � Jack � 5 � 8 � No
7 9 � 4 � 9 � Jack � 5 � Yes
8 3 � 3 � 3 � 5 � 5 � Yes
9 Queen � 4 � Queen � 6 � 4 � No
10 Queen � 3 � 7 � 7 � 8 � Yes
11 8 � 9 � 7 � 8 � Ace � Yes
12 Ace � 9 � 4 � 2 � Ace � Yes
13 4 � 3 � Ace � 9 � 5 � No
14 10 � 7 � 8 � King � 4 � No
15 Queen � 8 � Queen � 8 � 5 � No
16 King � 10 � Jack � 10 � 10 � No
17 Queen � Queen � Ace � King � 7 � Yes
18 5 � 6 � Ace � 4 � 6 � Yes
19 3 � 5 � 2 � King � 9 � No
20 8 � Jack � 7 � 10 � 3 � No
21 5 � 4 � Jack � 2 � King � No
22 5 � 4 � Jack � King � 2 � No
23 King � King � 6 � 2 � 5 � Yes
24 8 � 9 � 6 � Ace � 5 � No
25 Ace � 7 � 4 � 9 � 9 � Yes

% Yes 44%

In this series of 25 experiments, 44 percent of the hands contained one pair, and therefore 0.44
is our estimate (for the time being) of the probability that one pair will turn up in a poker
hand. But we must notice that this estimate is based on only 25 hands, and therefore might
well be fairly far off the mark (as we shall soon see).

This experimental “resampling” estimation does not require a deck of cards. For example, one
might create a 52-sided die, one side for each card in the deck, and roll it five times to get a
“hand.” But note one important part of the procedure: No single “card” is allowed to come up
twice in the same set of five spins, just as no single card can turn up twice or more in the same

200



hand. If the same “card” did turn up twice or more in a dice experiment, one could pretend
that the roll had never taken place; this procedure is necessary to make the dice experiment
analogous to the actual card-dealing situation under investigation. Otherwise, the results will
be slightly in error. This type of sampling is “sampling without replacement,” because each
card is not replaced in the deck prior to dealing the next card (that is, prior to the end of the
hand).

11.3 A first approach to the one-pair problem with code

We could also approach this problem using random numbers from the computer to simulate
the values.

Let us first make some numbers from which to sample. We want to simulate a deck of playing
cards analogous to the real cards we used previously. We don’t need to simulate all the features
of a deck, but only the features that matter for the problem at hand. In our case, the feature
that matters is the face value. We require a deck with four “1”s, four “2”s, etc., up to four
“13”s, where 1 is an Ace, and 13 is a King. The suits don’t matter for our present purposes.

We first first make an array to represent the face values in one suit.

# Card values 1 through 13 (1 up to, not including 14).
one_suit = np.arange(1, 14)
one_suit

array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])

We have the face values for one suit, but we need the face values for whole deck of cards —
four suits. We do this by making a new array that consists of four repeats of one_suit:

# Repeat the one_suit array four times
deck = np.repeat(one_suit, 4)
deck

array([ 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5,
5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9,
9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13,

13])
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11.4 Shuffling the deck with Python

At this point we have a complete deck in the variable deck . But that “deck” is ordered by
value, first ones (Aces) then 2s and so on. If we do not shuffle the deck, the results will be
predictable. Therefore, we would like to select five of these “cards” (52 values) at random.
There are two ways of doing this. The first is to use the ’rnd.choice‘]{.python} tool in the
familiar way, to choose 5 values at random from this strictly ordered deck. We want to draw
these cards without replacement (of which more later). Without replacement means that once
we have drawn a particular value, we cannot draw that value a second time — just as you
cannot get the same card twice in a hand when the dealer deals you a hand of five cards.

So far, each of our uses of rnd.choice has done sampling with replacement, where you can
get the same item more than once in a particular sample. Here we need without replacement.
rnd.choice has an argument you can send, called replace, to tell it whether to replace values
when drawing the sample. We have not used that argument so far, because the default is True
— sampling with replacement. Here we need to use the argument — replace=False — to get
sampling without replacement.

# One hand, sampling from the deck without replacement.
hand = rnd.choice(deck, size=5, replace=False)
hand

array([ 9, 4, 11, 9, 13])

The above is one way to get a random hand of five cards from the deck. Another way is to
use the rnd.permuted function to shuffle the whole deck of 52 “cards” into a random order,
just as a dealer would shuffle the deck before dealing. Then we could take — for example —
the first five cards from the shuffled deck to give a random hand. See Section 8.14 for more
on rnd.permuted.

# Shuffle the whole 52 card deck.
shuffled = rnd.permuted(deck)
# The "cards" are now in random order.
shuffled

array([12, 13, 2, 9, 6, 7, 7, 7, 11, 13, 2, 8, 6, 9, 4, 1, 5,
12, 11, 9, 1, 2, 4, 2, 3, 3, 11, 6, 4, 11, 8, 7, 13, 8,
12, 5, 4, 5, 9, 8, 5, 6, 3, 1, 1, 12, 3, 13, 10, 10, 10,
10])

Now we can get our hand by taking the first five cards from the deck:
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# Select the first five "cards" from the shuffled deck.
hand = shuffled[:5]
hand

array([12, 13, 2, 9, 6])

You have seen that we can use one of two procedures to a get random sample of five cards
from deck, drawn without replacement:

1. Using rnd.choice with size=5 and replace=False to take the random sample directly
from deck, or

2. shuffling the entire deck and then taking the first five “cards” from the result of the
shuffle.

Either is a valid way of getting five cards at random from the deck. It’s up to us which to
choose — we slightly prefer to shuffle and take the first five, because it is more like the physical
procedure of shuffling the deck and dealing, but which you prefer, is up to you.

11.4.1 A first-pass computer solution to the one-pair problem

Choosing the shuffle deal way, the cell to generate one hand is:

shuffled = rnd.permuted(deck)
hand = shuffled[:5]
hand

array([ 7, 4, 12, 1, 2])

Without doing anything further, we could run this cell many times, and each time, we could
note down whether the particular hand had exactly one pair or not.

Table 11.2 has the result of running that procedure 25 times:

Table 11.2: Results of 25 hands using random numbers

Hand Card 1 Card 2 Card 3 Card 4 Card 5 One pair?
1 10 5 7 12 12 Yes
2 6 9 2 6 8 Yes
3 11 8 9 6 1 No
4 8 10 2 11 12 No
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Hand Card 1 Card 2 Card 3 Card 4 Card 5 One pair?
5 1 10 11 8 5 No
6 8 10 3 9 5 No
7 10 9 13 1 9 Yes
8 13 4 3 11 5 No
9 7 1 4 13 6 No
10 11 5 11 8 4 Yes
11 7 10 7 13 9 Yes
12 2 11 4 7 8 No
13 12 1 3 10 2 No
14 10 2 11 8 1 No
15 1 6 12 12 5 Yes
16 4 8 7 8 6 Yes
17 7 10 9 4 4 Yes
18 3 4 11 11 12 Yes
19 10 12 2 13 1 No
20 9 6 4 13 4 Yes
21 7 3 3 9 7 No
22 13 4 10 5 8 No
23 13 2 9 8 8 Yes
24 5 12 7 11 8 No
25 7 5 8 10 7 Yes

% Yes 48%

11.5 Finding exactly one pair using code

Thus far we have had to look ourselves at the set of cards, or at the numbers, and decide if
there was exactly one pair. We would like the computer to do this for us. Let us stay with
the numbers we generated above by dealing the random hand from the deck of numbers. To
find pairs, we will go through the following procedure:

• For each possible value (1 through 13), count the number of times each value has occurred
in hand. Call the result of this calculation — repeat_nos.

• Select repeat_nos values equal to 2;
• Count the number of “2” values in repeat_nos. This the number of pairs, and excludes

three of a kind or four a kind.
• If the number of pairs is exactly one, label the hand as “Yes”, otherwise label it as “No”.
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11.6 Finding number of repeats using np.bincount

Consider the following 5-card “hand” of values:

hand = np.array([5, 7, 5, 4, 7])

This hand represents a pair of 5s and a pair of 7s.

We want to detect the number of repeats for each possible card value, 1 through 13. Let’s say
we are looking for 5s. We can detect which of the values are equal to 5 by making a Boolean
array, where there is True for a value equal to 5, and False otherwise:

is_5 = (hand == 5)
is_5

array([ True, False, True, False, False])

We can then count the number of 5s with:

np.sum(is_5)

np.int64(2)

In one cell:

number_of_5s = np.sum(hand == 5)
number_of_5s

np.int64(2)

We could do this laborious task for every possible card value (1 through 13):

number_of_1s = np.sum(hand == 1) # Number of aces in hand
number_of_2s = np.sum(hand == 2) # Number of 2s in hand
number_of_3s = np.sum(hand == 3)
number_of_4s = np.sum(hand == 4)
number_of_5s = np.sum(hand == 5)
number_of_6s = np.sum(hand == 6)
number_of_7s = np.sum(hand == 7)
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number_of_8s = np.sum(hand == 8)
number_of_9s = np.sum(hand == 9)
number_of_10s = np.sum(hand == 10)
number_of_11s = np.sum(hand == 11)
number_of_12s = np.sum(hand == 12)
number_of_13s = np.sum(hand == 13) # Number of Kings in hand.

Above, we store the result for each card in a separate variable; this is inconvenient, because
we would have to go through each variable checking for a pair (a value of 2). It would be more
convenient to store these results in an array. One way to do that would be to store the result
for card value 1 at position (index, offset) 1, the result for value 2 at position 2, and so on,
like this:

# Make array length 14. We don't use position (offset) 0, and the last
# position (offset) in this array will be 13.
repeat_nos = np.zeros(14)
repeat_nos[1] = np.sum(hand == 1) # Number of aces in hand
repeat_nos[2] = np.sum(hand == 2) # Number of 2s in hand
repeat_nos[3] = np.sum(hand == 3)
repeat_nos[4] = np.sum(hand == 4)
repeat_nos[5] = np.sum(hand == 5)
repeat_nos[6] = np.sum(hand == 6)
repeat_nos[7] = np.sum(hand == 7)
repeat_nos[8] = np.sum(hand == 8)
repeat_nos[9] = np.sum(hand == 9)
repeat_nos[10] = np.sum(hand == 10)
repeat_nos[11] = np.sum(hand == 11)
repeat_nos[12] = np.sum(hand == 12)
repeat_nos[13] = np.sum(hand == 13) # Number of Kings in hand.
# Show the result
repeat_nos

array([0., 0., 0., 0., 1., 2., 0., 2., 0., 0., 0., 0., 0., 0.])

You may recognize all this repetitive typing as a good sign we could use a for loop to do the
work — er — for us.

repeat_nos = np.zeros(14)
for i in range(14): # Set i to be first 0, then 1, ... through 13.

repeat_nos[i] = np.sum(hand == i)
# Show the result
repeat_nos
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array([0., 0., 0., 0., 1., 2., 0., 2., 0., 0., 0., 0., 0., 0.])

Notice that we started our loop by checking for values equal to 0, and then values equal to 1
and so on. By our definition of the deck, no card can have value 0, so the first time through
this loop, we will always get a count of 0. We could have saved ourselves a tiny amount of
computing time if we had missed out that pointless step of checking 0, by using for i in
range(1, 14): instead. In this case, we think the code is a little bit neater to read if we leave
in the default start at 0, at a tiny cost in wasted computer effort.

In our particular hand, after we have done the count for 7s, we will always get 0 for card values
8, 9 … 13, because 7 was the highest card (maximum value) for our particular hand. As you
might expect, there is a a Numpy function np.max that will quickly tell us the maximum value
in the hand:

np.max(hand)

np.int64(7)

We can use np.max to make our loop more efficient, by stopping our checks when we’ve reached
the maximum value, like this:

max_value = np.max(hand)
# Only make an array large enough to house counts for the max value.
repeat_nos = np.zeros(max_value + 1)
for i in range(max_value + 1): # Set i to 0, then 1 ... through max_value

repeat_nos[i] = np.sum(hand == i)
# Show the result
repeat_nos

array([0., 0., 0., 0., 1., 2., 0., 2.])

In fact, this is exactly what the function np.bincount does, so we can use that function instead
of our loop, to do the same job:

repeat_nos = np.bincount(hand)
repeat_nos

array([0, 0, 0, 0, 1, 2, 0, 2])
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11.7 Looking for hands with exactly one pair

Now we have repeat_nos, we can proceed with the rest of the steps above.

We can count the number of cards that have exactly two repeats:

(repeat_nos == 2)

array([False, False, False, False, False, True, False, True])

n_pairs = np.sum(repeat_nos == 2)
# Show the result
n_pairs

np.int64(2)

The hand is of interest to us only if the number of pairs is exactly 1:

# Check whether there is exactly one pair in this hand.
n_pairs == 1

np.False_

We now have the machinery to use Python for all the logic in simulating multiple hands, and
checking for exactly one pair.

Let’s do that, and use Python to do the full job of dealing many hands and finding pairs in
each one. We repeat the procedure above using a for loop. The for loop commands the
program to do ten thousand repeats of the statements in the “loop” (indented statements).

In the body of the loop (the part that gets repeated for each trial) we:

• Shuffle the deck.
• Deal ourselves a new hand.
• Calculate the repeat_nos for this new hand.
• Calculate the number of pairs from repeat_nos; store this as n_pairs.
• Put n_pairs for this repetition into the correct place in the scoring array z.
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With that we end a single trial, and go back to the beginning, until we have done this 10000
times.

When those 10000 repetitions are over, the computer moves on to count (sum) the number of
“1’s” in the score-keeping array z, each “1” indicating a hand with exactly one pair. We store
this count at location k. We divide k by 10000 to get the proportion of hands that had one
pair, and we print the result of k to the screen.

Note 16: Notebook: One pair

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

# Create a bucket (vector) called a with four "1's," four "2's," four "3's,"
# etc., to represent a deck of cards
one_suit = np.arange(1, 14)
one_suit

array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])

# Repeat values for one suit four times to make a 52 card deck of values.
deck = np.repeat(one_suit, 4)
deck

array([ 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5,
5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9,
9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13,

13])

# Array to store result of each trial.
z = np.zeros(10000)

# Repeat the following steps 10000 times
for i in range(10000):

# Shuffle the deck
shuffled = rnd.permuted(deck)

# Take the first five cards to make a hand.
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hand = shuffled[:5]

# How many pairs?
# Counts for each card rank.
repeat_nos = np.bincount(hand)
n_pairs = np.sum(repeat_nos == 2)

# Keep score of # of pairs
z[i] = n_pairs

# End loop, go back and repeat

# How often was there 1 pair?
k = np.sum(z == 1)

# Convert to proportion.
kk = k / 10000

# Show the result.
print(kk)

0.4191

End of notebook: One pair

one_pair starts at Note 16.

In one run of the program, the result in kk was 0.419, so our estimate would be that the
probability of a single pair is 0.419.

How accurate are these resampling estimates? The accuracy depends on the number of hands
we deal — the more hands, the greater the accuracy. If we were to examine millions of hands,
42 percent would contain a pair each; that is, the chance of getting a pair in the long run is 42
percent. It turns out the estimate of 48 percent based on 25 hands in Table 11.1 is fairly close
to the long-run estimate, though whether or not it is close enough depends on one’s needs of
course. If you need great accuracy, deal many more hands.

A note on the decks, hands, repeat_noss in the above program, etc.: These “variables” are
called “array”s in Python. An array is an array (sequence) of elements that gets filled with
numbers as Python conducts its operations.
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To help keep things straight (though the program does not require it), we often use z to name
the array that collects all the trial results, and k to denote our overall summary results. Or
you could call it something like scoreboard — it’s up to you.

How many trials (hands) should be made for the estimate? There is no easy answer.1 One
useful device is to run several (perhaps ten) equal sized sets of trials, and then examine whether
the proportion of pairs found in the entire group of trials is very different from the proportions
found in the various subgroup sets. If the proportions of pairs in the various subgroups differ
greatly from one another or from the overall proportion, then keep running additional larger
subgroups of trials until the variation from one subgroup to another is sufficiently small for
your purposes. While such a procedure would be impractical using a deck of cards or any
other physical means, it requires little effort with the computer and Python.

11.8 Two more tntroductory poker problems

Which is more likely, a poker hand with two pairs, or a hand with three of a kind? This
is a comparison problem, rather than a problem in absolute estimation as was the previous
example.

In a series of 100 “hands” that were “dealt” using random numbers, four hands contained two
pairs, and two hands contained three of a kind. Is it safe to say, on the basis of these 100
hands, that hands with two pairs are more frequent than hands with three of a kind? To check,
we deal another 300 hands. Among them we see fifteen hands with two pairs (3.75 percent)
and eight hands with three of a kind (2 percent), for a total of nineteen to ten. Although the
difference is not enormous, it is reasonably clear-cut. Another 400 hands might be advisable,
but we shall not bother.

Earlier I obtained forty-four hands with one pair each out of 100 hands, which makes it quite
plain that one pair is more frequent than either two pairs or three-of-a-kind. Obviously, we
need more hands to compare the odds in favor of two pairs with the odds in favor of three-of-
a-kind than to compare those for one pair with those for either two pairs or three-of-a-kind.
Why? Because the difference in odds between one pair, and either two pairs or three-of-a-
kind, is much greater than the difference in odds between two pairs and three-of-a-kind. This
observation leads to a general rule: The closer the odds between two events, the more trials
are needed to determine which has the higher odds.

Again it is interesting to compare the odds with the formulaic mathematical computations,
which are 1 in 21 (4.75 percent) for a hand containing two pairs and 1 in 47 (2.1 percent) for

1One simple rule-of-thumb is to quadruple the original number. The reason for quadrupling is that four times
as many iterations (trials) of this resampling procedure give twice as much accuracy (as measured by the
standard deviation, the most frequent measurement of accuracy). That is, the error decreases with the
square root of the number of iterations. If you see that you need much more accuracy, then immediately
increase the number of iterations even more than four times — perhaps ten or a hundred times.
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a hand containing three-of-a-kind — not too far from the estimates of .0375 and .02 derived
from simulation.

To handle the problem with the aid of the computer, we simply need to estimate the proportion
of hands having triplicates and the proportion of hands with two pairs, and compare those
estimates.

To estimate the hands with three-of-a-kind, we can use a notebook just like “One Pair” earlier,
except using repeat_nos == 3 to search for triplicates instead of duplicates. The program,
then, is:

Note 17: Notebook: Three of a kind

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

# Create a bucket (vector) called a with four "1's," four "2's," four "3's,"
# etc., to represent a deck of cards
one_suit = np.arange(1, 14)
# Repeat values for one suit four times to make a 52 card deck of values.
deck = np.repeat(one_suit, 4)

triples_per_trial = np.zeros(10000)

# Repeat the following steps 10000 times
for i in range(10000):

# Shuffle the deck
shuffled = rnd.permuted(deck)

# Take the first five cards.
hand = shuffled[:5]

# How many triples?
repeat_nos = np.bincount(hand)
n_triples = np.sum(repeat_nos == 3)

# Keep score of # of triples
triples_per_trial[i] = n_triples

# End loop, go back and repeat
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# How often was there 1 pair?
n_triples = np.sum(triples_per_trial == 1)

# Convert to proportion
print(n_triples / 10000)

0.0272

End of notebook: Three of a kind

three_of_a_kind starts at Note 17.

To estimate the probability of getting a two-pair hand, we revert to the original program
(counting pairs), except that we examine all the results in the score-keeping vector z for hands
in which we had two pairs, instead of one. ::: {.notebook name=“two_pairs” title=“Two
pairs”}

import numpy as np
rnd = np.random.default_rng()

one_suit = np.arange(1, 14)
deck = np.repeat(one_suit, 4)

pairs_per_trial = np.zeros(10000)

# Repeat the following steps 10000 times
for i in range(10000):

# Shuffle the deck
shuffled = rnd.permuted(deck)

# Take the first five cards.
hand = shuffled[:5]

# How many pairs?
# Counts for each card rank.
repeat_nos = np.bincount(hand)
n_pairs = np.sum(repeat_nos == 2)

# Keep score of # of pairs
pairs_per_trial[i] = n_pairs
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# End loop, go back and repeat

# How often were there 2 pairs?
n_two_pairs = np.sum(pairs_per_trial == 2)

# Convert to proportion
print(n_two_pairs / 10000)

0.0487

:::

For efficiency (though efficiency really is not important here because the computer performs
its operations so cheaply) we could develop both estimates in a single program by simply
generating 10000 hands, and count the number with three-of-a-kind and the number with two
pairs.

Before we leave the poker problems, we note a difficulty with Monte Carlo simulation. The
probability of a royal flush is so low (about one in half a million) that it would take much
computer time to compute. On the other hand, considerable inaccuracy is of little matter.
Should one care whether the probability of a royal flush is 1/100,000 or 1/500,000?

11.9 The concepts of replacement and non-replacement

In the poker example above, we did not replace the first card we drew. If we were to replace
the card, it would leave the probability the same before the second pick as before the first
pick. That is, the conditional probability remains the same. If we replace, conditions do not
change. But if we do not replace the item drawn, the probability changes from one moment
to the next. (Perhaps refresh your mind with the examples in the discussion of conditional
probability including Section 9.1.1)

If we sample with replacement, the sample drawings remain independent of each other — a
topic addressed in Section 9.1.

In many cases, a key decision in modeling the situation in which we are interested is whether
to sample with or without replacement. The choice must depend on the characteristics of the
situation.

There is a close connection between the lack of finiteness of the concept of universe in a given
situation, and sampling with replacement. That is, when the universe (population) we have in
mind is not small, or has no conceptual bounds at all, then the probability of each successive
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observation remains the same, and this is modeled by sampling with replacement. (“Not finite”
is a less expansive term than “infinite,” though one might regard them as synonymous.)

Chapter 12 discusses problems whose appropriate concept of a universe is finite, whereas
Chapter 13 discusses problems whose appropriate concept of a universe is not finite. This
general procedure will be discussed several times, with examples included.
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12 Probability Theory, Part 3

This chapter discusses problems whose appropriate concept of a universe is not finite, whereas
Chapter 13 discusses problems whose appropriate concept of a universe is finite.

How can a universe be infinite yet known? Consider, for example, the possible flips with a
given coin; the number is not limited in any meaningful sense, yet we understand the properties
of the coin and the probabilities of a head and a tail.

12.1 Example: The Birthday Problem

This examples illustrates the probability of duplication in a multi-outcome sample from an
infinite universe.

As an indication of the power and simplicity of resampling methods, consider this famous
examination question used in probability courses: What is the probability that two or more
people among a roomful of (say) twenty-five people will have the same birthday? To obtain an
answer we need simply examine the first twenty-five numbers from the random-number table
that fall between “001” and “365” (the number of days in the year), record whether or not
there is a duplication among the twenty-five, and repeat the process often enough to obtain a
reasonably stable probability estimate.

Pose the question to a mathematical friend of yours, then watch her or him sweat for a
while, and afterwards compare your answer to hers/his. I think you will find the correct
answer very surprising. It is not unheard of for people who know how this problem works to
take advantage of their knowledge by making and winning big bets on it. (See how a bit of
knowledge of probability can immediately be profitable to you by avoiding such unfortunate
occurrences?)

More specifically, these steps answer the question for the case of twenty-five people in the
room:

• Step 1. Let three-digit random numbers 1-365 stand for the 365 days in the year.
(Ignore leap year for simplicity.)

• Step 2. Examine for duplication among the first twenty-five random numbers chosen
“001-365.” (Triplicates or higher-order repeats are counted as duplicates here.) If there
is one or more duplicate, record “yes.” Otherwise record “no.”
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• Step 3. Repeat perhaps a thousand times, and calculate the proportion of a duplicate
birthday among twenty-five people.

You would probably use the computer to generate the initial random numbers.

Now try the program written as follows.

Note 18: Notebook: The Birthday Problem

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

n_with_same_birthday = np.zeros(10000)

days_of_year = np.arange(1, 366) # 1 through 365

# Do 10000 trials (experiments)
for i in range(10000):

# Generate 25 numbers randomly between "1" and "365" put them in a.
a = rnd.choice(days_of_year, size=25)

# Looking in a, count the number of multiples and put the result in
# b. We request multiples > 1 because we are interested in any multiple,
# whether it is a duplicate, triplicate, etc. Had we been interested only
# in duplicates, we would have put in np.sum(counts == 2).
counts = np.bincount(a)
n_duplicates = np.sum(counts > 1)

# Score the result of each trial to our store
n_with_same_birthday[i] = n_duplicates

# End the loop for the trial, go back and repeat the trial until all 10000
# are complete, then proceed.

# Determine how many trials had at least one multiple.
k = np.sum(n_with_same_birthday)

# Convert to a proportion.
kk = k / 10000
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# Print the result.
print(kk)

0.7799

End of notebook: The Birthday Problem

birthday_problem starts at Note 18.

We have dealt with this example in a rather intuitive and unsystematic fashion. From here
on, we will work in a more systematic, step-by-step manner. And from here on the problems
form an orderly sequence of the classical types of problems in probability theory (Chapter 12
and Chapter 13), and inferential statistics (Chapter 20 to Chapter 28.)

12.2 Example: Three Daughters Among Four Children

This problem illustrates a problem with two outcomes (Binomial1) and sampling with Replace-
ment Among Equally Likely Outcomes.

What is the probability that exactly three of the four children in a four-child family will be
daughters?2

The first step is to state that the approximate probability that a single birth will produce a
daughter is 50-50 (1 in 2). This estimate is not strictly correct, because there are roughly 106
male children born to each 100 female children. But the approximation is close enough for most
purposes, and the 50-50 split simplifies the job considerably. (Such “false” approximations are
part of the everyday work of the scientist. The appropriate question is not whether or not a
statement is “only” an approximation, but whether or not it is a good enough approximation
for your purposes.)

The probability that a fair coin will turn up heads is .50 or 50-50, close to the probability of
having a daughter. Therefore, flip a coin in groups of four flips, and count how often three of
the flips produce heads. (You must decide in advance whether three heads means three girls
or three boys.) It is as simple as that.

1Conventional labels such as “binomial” are used here for general background and as guideposts to orient
the student of conventional statistics. You do not need to know these labels to understand the resampling
approach; one of the advantages of resampling is that it avoids errors resulting from incorrect pigeonholing
of problems.

2Here, by “daughter” or “girl”, we just mean the assigned gender of the child at birth. If we wanted to be
more sophisticated, and work out the proportion of children who identify as female, we would need some
statistics on the current likelihood of changing gender identification by age, the children’s ages, and so on.
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In resampling estimation it is of the highest importance to work in a careful, step-by-step
fashion — to write down the steps in the estimation, and then to do the experiments just as
described in the steps. Here are a set of steps that will lead to a correct answer about the
probability of getting three daughters among four children:

• Step 1. Using coins, let “heads” equal “girl” and “tails” equal “boy.”
• Step 2. Throw four coins.
• Step 3. Examine whether the four coins fall with exactly three heads up. If so, write

“yes” on a record sheet; otherwise write “no.”
• Step 4. Repeat step 2 perhaps two hundred times.
• Step 5. Count the proportion “yes.” This proportion is an estimate of the probability

of obtaining exactly 3 daughters in 4 children.

The first few experimental trials might appear in the record sheet as follows (Table 12.1):

Table 12.1: Example trials from the three-girls problem

Number of Heads Yes or No
1 No
0 No
3 Yes
2 No
1 No
2 No
… …
… …
… …

The probability of getting three daughters in four births could also be found with a deck of
cards, a random number table, a die, or with Python. For example, half the cards in a deck
are black, so the probability of getting a black card (“daughter”) from a full deck is 1 in 2.
Therefore, deal a card, record “daughter” or “son,” replace the card, shuffle, deal again, and
so forth for 200 sets of four cards. Then count the proportion of groups of four cards in which
you got four daughters.

Note 19: Notebook: Three Girls

• Download notebook
• Interact
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import numpy as np
rnd = np.random.default_rng()

girl_counts = np.zeros(10000)

# Do 10000 trials
for i in range(10000):

# Select 'girl' or 'boy' at random, four times.
children = rnd.choice(['girl', 'boy'], size=4)

# Count the number of girls and put the result in b.
b = np.sum(children == 'girl')

# Keep track of each trial result in z.
girl_counts[i] = b

# End this trial, repeat the experiment until 10000 trials are complete,
# then proceed.

# Count the number of experiments where we got exactly 3 girls, and put this
# result in k.
n_three_girls = np.sum(girl_counts == 3)

# Convert to a proportion.
three_girls_prop = n_three_girls / 10000

# Print the results.
print(three_girls_prop)

0.2502

End of notebook: Three Girls

three_girls starts at Note 19.

Notice that the procedure outlined in the steps above would have been different (though
almost identical) if we asked about the probability of three or more daughters rather than
exactly three daughters among four children. For three or more daughters we would have
scored “yes” on our score-keeping pad for either three or four heads, rather than for just three
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heads. Likewise, in the computer solution we would have used the statement n_three_girls
= np.sum(girl_counts >= 3) .

It is important that, in this case, in contrast to what we did in the example from Section 11.2
(the introductory poker example), the card is replaced each time so that each card is dealt
from a full deck. This method is known as sampling with replacement. One samples with
replacement whenever the successive events are independent ; in this case we assume that the
chance of having a daughter remains the same (1 girl in 2 births) no matter what sex the
previous births were3. But, if the first card dealt is black and would not be replaced, the
chance of the second card being black would no longer be 26 in 52 (.50), but rather 25 in 51
(.49), if the first three cards are black and would not be replaced, the chances of the fourth
card’s being black would sink to 23 in 49 (.47).

To push the illustration further, consider what would happen if we used a deck of only six
cards, half (3 of 6) black and half (3 of 6) red, instead of a deck of 52 cards. If the chosen
card is replaced each time, the 6-card deck produces the same results as a 52-card deck; in
fact, a two-card deck would do as well. But, if the sampling is done without replacement, it is
impossible to obtain 4 “daughters” with the 6-card deck because there are only 3 “daughters”
in the deck. To repeat, then, whenever you want to estimate the probability of some series of
events where each event is independent of the other, you must sample with replacement. ##
Variations of the daughters problem

In later chapters we will frequently refer to a problem which is identical in basic structure to
the problem of three girls in four children — the probability of getting 9 females in ten calf
births if the probability of a female birth is (say) .5 — when we set this problem in the context
of the possibility that a genetic engineering practice is effective in increasing the proportion of
females (desirable for the production of milk).

So far we have assumed the simple case where we have an array of values that we are sampling
from, and we are selecting each of these values into the sample with equal probability.

For example, we started with the simple assumption that a child is just as likely to be born a
boy as a girl. Our input is:

input_values = ['girl', 'boy']

By default, rnd.choice will draw the input values with equal probability. Here, we draw a
sample (children) of four values from the input, where each value in children has an equal
chance of being “girl” or “boy”.

3This assumption is slightly contrary to scientific fact. A better example would be: What is the probability
that four mothers delivering successively in a hospital will all have daughters? But that example has other
difficulties — which is the way science always is.
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children = rnd.choice(input_values, size=4)
children

array(['boy', 'boy', 'boy', 'girl'], dtype='<U4')

That is, rnd.choice gives each element in input_values an equal chance of being selected as
the next element in children.

That is fine if we have some simple probability to simulate, like 0.5. But now let us imagine
we want to get more precise. We happen to know that any given birth is just slightly more
likely to be a boy than a girl.4. For example, the proportion of boys born in the UK is 0.513.
Hence the proportion of girls is 1-0.513 = 0.487.

12.3 rnd.choice and the p argument

We could replicate this probability of 0.487 for ‘girl’ in the output sample by making an input
array of 1000 strings, that contains 487 ‘girls’ and 513 ‘boys’:

big_girls = np.repeat(['girl', 'boy'], [487, 513])

Now if we sample using the default in rnd.choice, each element in the input big_girls array
will have the same chance of appearing in the sample, but because there are 487 ‘girls’, and
513 ‘boys’, each with an equal chance of appearing in the sample, we will get a ‘girl’ in roughly
487 out of every 1000 elements we draw, and a boy roughly 513 / 1000 times. That is, our
chance of any one element of being a ‘girl’ is, as we want, 0.487.

# Now each element has probability 0.487 of 'girl', 0.513 of 'boy'.
realistic_children = rnd.choice(big_girls, size=4)
realistic_children

array(['boy', 'boy', 'girl', 'boy'], dtype='<U4')

4This fact was the origin of the very first “significance test” in statistics. In the early 1700s, John Arbuthnot
(1710) noticed that there were more christenings of boys than girls in London in every year for which he had
figures. He showed that this was vanishingly unlikely if male births were in fact exactly as likely as female
births, and attributed this to divine providence, because society tended to lose males faster than females in
in adulthood, due to manual labor and war.
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But, there is an easier way than compiling a big 1000 element array, and that is to use the p=
argument to rnd.choice. This allows us to specify the probability with which we will draw
each of the input elements into the output sample. For example, to draw ‘girl’ with probability
0.487 and ‘boy’ with probability 0.513, we would do:

# Draw 'girl' with probability (p) 0.487 and 'boy' 0.513.
children_again = rnd.choice(['girl', 'boy'], size=4, p=[0.487, 0.513])
children_again

array(['girl', 'boy', 'girl', 'girl'], dtype='<U4')

The p argument allows us to specify the probability of each element in the input array — so if
we had three elements in the input array, we would need three probabilities in p. For example,
let’s say we were looking at some poorly-entered hospital records, we might have ‘girl’ or ‘boy’
recorded as the child’s gender, but the record might be missing — ‘not-recorded’ — with a
19% chance:

# Draw 'girl' with probability (p) 0.4, 'boy' with p=0.41, 'not-recorded' with
# p=0.19.
rnd.choice(['girl', 'boy', 'not-recorded'], size=30, p=[0.4, 0.41, 0.19])

array(['girl', 'girl', 'girl', 'girl', 'boy', 'girl', 'girl',
'not-recorded', 'girl', 'boy', 'boy', 'girl', 'girl', 'boy',
'not-recorded', 'girl', 'not-recorded', 'boy', 'girl', 'boy',
'not-recorded', 'girl', 'boy', 'girl', 'boy', 'not-recorded',
'girl', 'girl', 'boy', 'not-recorded'], dtype='<U12')

How does the p argument to rnd.choice work?

You might wonder how Python does this trick of choosing the elements with different
probabilities.
One way of doing this is to use uniform random numbers from 0 through 1. These are
floating point numbers that can take any value, at random, from 0 through 1.

# Run this cell a few times to see random numbers anywhere from 0 through 1.
rnd.uniform()

0.3358873070551027

Because this random uniform number has an equal chance of being anywhere in the range
0 through 1, there is a 50% chance that any given number will be less then 0.5 and a
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50% chance it is greater than 0.5. (Of course it could be exactly equal to 0.5, but this is
vanishingly unlikely, so we will ignore that for now).
So, if we thought girls were exactly as likely as boys, we could select from ‘girl’ and ‘boy’
using this simple logic:

if rnd.uniform() < 0.5:
result = 'girl'

else:
result = 'boy'

But, by the same logic, there is a 0.487 chance that the random uniform number will be
less than 0.487 and a 0.513 chance it will be greater. So, if we wanted to give ourselves
a 0.487 chance of ‘girl’, we could do:

if rnd.uniform() < 0.487:
result = 'girl'

else:
result = 'boy'

We can extend the same kind of logic to three options. For example, there is a 0.4 chance
the random uniform number will be less than 0.4, a 0.41 chance it will be somewhere
between 0.4 and 0.81, and a 0.19 chance it will be greater than 0.81.

12.4 The daughters problem with more accurate probabilities

We can use the probability argument to rnd.choice to do a more realistic simulation of the
chance of a family with exactly three girls. In this case it is easy to make the chance for the
Python simulation, but much more difficult using physical devices like coins to simulate the
randomness.

Remember, the original code for the 50-50 case, has the following:

# Select 'girl' or 'boy' at random, four times.
children = rnd.choice(['girl', 'boy'], size=4)

# Count the number of girls and put the result in b.
b = np.sum(children == 'girl')

The only change we need to the above, for the 0.487 - 0.513 case, is the one you see above:
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# Give 'girl' 48.7% of the time, 'boy' 51.3% of the time.
children = rnd.choice(['girl', 'boy'], size=4, p=[0.487, 0.513])

b = np.sum(children == 'girl')

The rest of the program remains unchanged.

12.5 A note on clarifying and labeling problems

In conventional analytic texts and courses on inferential statistics, students are taught to
distinguish between various classes of problems in order to decide which formula to apply. I
doubt the wisdom of categorizing and labeling problems in that fashion, and the practice is
unnecessary here. I consider it better that the student think through every new problem in
the most fundamental terms. The exercise of this basic thinking avoids the mistakes that
come from too-hasty and superficial pigeon-holing of problems into categories. Nevertheless,
in order to help readers connect up the resampling material with the conventional curriculum
of analytic methods, the examples presented here are given their conventional labels. And the
examples given here cover the range of problems encountered in courses in probability and
inferential statistics.

To repeat, one does not need to classify a problem when one proceeds with the Monte Carlo
resampling method; you simply model the features of the situation you wish to analyze. In
contrast, with conventional methods you must classify the situation and then apply procedures
according to rules that depend upon the classification; often the decision about which rules to
follow must be messy because classification is difficult in many cases, which contributes to the
difficulty of choosing correct conventional formulaic methods.

12.6 Binomial trials

The problem of the three daughters in four births is known in the conventional literature as
a “binomial sampling experiment with equally-likely outcomes.” “Binomial” means that the
individual simple event (a birth or a coin flip) can have only two outcomes (boy or girl, heads
or tails), “binomial” meaning “two names” in Latin.5

5Conventional labels such as “binomial” are used here for general background and as guideposts to orient
the student of conventional statistics. You do not need to know these labels to understand the resampling
approach; one of the advantages of resampling is that it avoids errors resulting from incorrect pigeonholing
of problems.
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A fundamental property of binomial processes is that the individual trials are independent,
a concept discussed earlier. A binomial sampling process is a series of binomial (one-of-two-
outcome) events about which one may ask many sorts of questions — the probability of exactly
X heads (“successes”) in N trials, or the probability of X or more “successes” in N trials, and
so on.

“Equally likely outcomes” means we assume that the probability of a girl or boy in any one birth
is the same (though this assumption is slightly contrary to fact); we represent this assumption
with the equal-probability heads and tails of a coin. Shortly we will come to binomial sampling
experiments where the probabilities of the individual outcomes are not equal.

The term “with replacement” was explained earlier; if we were to use a deck of red and black
cards (instead of a coin) for this resampling experiment, we would replace the card each time
a card is drawn.

The introductory poker example from Section 11.2, illustrated sampling without replacement,
as will other examples to follow.

This problem would be done conventionally with the binomial theorem using probabilities of
.5, or of .487 and .513, asking about 3 successes in 4 trials.

12.7 Example: Three or More Successful Basketball Shots in Five
Attempts

This is an example of two-outcome sampling with unequally-likely outcomes, with replacement
— a binomial experiment.

What is the probability that a basketball player will score three or more baskets in five shots
from a spot 30 feet from the basket, if on the average she succeeds with 25 percent of her shots
from that spot?

In this problem the probabilities of “success” or “failure” are not equal, in contrast to the
previous problem of the daughters. Instead of a 50-50 coin, then, an appropriate “model”
would be a thumbtack that has a 25 percent chance of landing “up” when it falls, and a 75
percent chance of landing down.

If we lack a thumbtack known to have a 25 percent chance of landing “up,” we could use a
card deck and let spades equal “success” and the other three suits represent “failure.” Our
resampling experiment could then be done as follows:

1. Let “spade” stand for “successful shot,” and the other suits stand for unsuccessful shot.
2. Draw a card, record its suit (“spade” or “other”) and replace. Do so five times (for five

shots).
3. Record whether the outcome of step 2 was three or more spades. If so indicate “yes,”

and otherwise “no.”
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4. Repeat steps 2-4 perhaps four hundred times.
5. Count the proportion “yes” out of the four hundred throws. That proportion estimates

the probability of getting three or more baskets out of five shots if the probability of a
single basket is .25.

The first four repetitions on your score sheet might look like this (Table 12.2):

Table 12.2: First four repetitions of 3 or more shots simulation

Card 1 Card 2 Card 3 Card 4 Card 5 Result
Spade Other Other Other Other No
Other Other Other Other Other No
Spade Spade Other Spade Spade Yes
Other Spade Other Other Spade No

Instead of cards, we could have used two-digit random numbers, with (say) “1-25” standing
for “success,” and “26-00” (“00” in place of “100”) standing for failure. Then the steps would
simply be:

1. Let the random numbers “1-25” stand for “successful shot,” “26-00” for unsuccessful
shot.

2. Draw five random numbers;
3. Count how many of the numbers are between “01” and “25.” If three or more, score

“yes.”
4. Repeat step 2 four hundred times.

If you understand the earlier “three_girls” program, then the program below should be easy:
To create 10000 samples, we start with a for statement. We then sample 5 numbers between
“1” and “4” into our variable a to simulate the 5 shots, each with a 25 percent — or 1 in 4 —
chance of scoring. We decide that 1 will stand for a successful shot, and 2 through 4 will stand
for a missed shot, and therefore we count (sum) the number of 1’s in a to determine the number
of shots resulting in baskets in the current sample. The next step is to transfer the results of
each trial to array n_baskets. We then finish the loop by unindenting the next line of code.
The final step is to search the array n_baskets, after the 10000 samples have been generated
and sum the times that 3 or more baskets were made. We place the results in n_more_than_2,
calculate the proportion in propo_more_than_2, and then display the result.

Note 20: Notebook: Three or more basketball shots

• Download notebook
• Interact
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import numpy as np
rnd = np.random.default_rng()

n_baskets = np.zeros(10000)

# Do 10000 experimental trials.
for i in range(10000):

# Generate 5 random numbers, each between 1 and 4, put them in "a".
# Let "1" represent a basket, "2" through "4" be a miss.
a = rnd.integers(1, 5, size=5)

# Count the number of baskets, put that result in b.
b = np.sum(a == 1)

# Keep track of each experiment's results in z.
n_baskets[i] = b

# End the experiment, go back and repeat until all 10000 are completed, then
# proceed.

# Determine how many experiments produced more than two baskets, put that
# result in k.
n_more_than_2 = np.sum(n_baskets > 2)

# Convert to a proportion.
prop_more_than_2 = n_more_than_2 / 10000

# Print the result.
print(prop_more_than_2)

0.104

End of notebook: Three or more basketball shots

basketball_shots starts at Note 20.
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12.8 Note to the student of analytic probability theory

This problem would be done conventionally with the binomial theorem, asking about the
chance of getting 3 successes in 5 trials, with the probability of a success = .25.

12.9 Example: One in Black, Two in White, No Misses in Three
Archery Shots

This is an example of a multiple outcome (multinomial) sampling with unequally likely out-
comes; with replacement.

Assume from past experience that a given archer puts 10 percent of his shots in the black
(“bullseye”) and 60 percent of his shots in the white ring around the bullseye, but misses
with 30 percent of his shots. How likely is it that in three shots the shooter will get exactly
one bullseye, two in the white, and no misses? Notice that unlike the previous cases, in this
example there are more than two outcomes for each trial.

This problem may be handled with a deck of three colors (or suits) of cards in proportions
varying according to the probabilities of the various outcomes, and sampling with replacement.
Using random numbers is simpler, however:

• Step 1. Let “1” = “bullseye,” “2-7” = “in the white,” and “8-0” = “miss.”
• Step 2. Choose three random numbers, and examine whether there are one “1” and

two numbers “2-7.” If so, record “yes,” otherwise “no.”
• Step 3. Repeat step 2 perhaps 400 times, and count the proportion of “yeses.” This

estimates the probability sought.

This problem would be handled in conventional probability theory with what is known as the
Multinomial Distribution.

This problem may be quickly solved on the computer using Python with the notebook labeled
“bullseye” below. Bullseye has a complication not found in previous problems: It tests whether
two different sorts of events both happen — a bullseye plus two shots in the white.

After generating three randomly-drawn numbers between 1 and 10, we check with the sum
function to see if there is a bullseye. If there is, the if statement tells the computer to continue
with the operations, checking if there are two shots in the white; if there is no bullseye, the if
statement tells the computer to end the trial and start another trial. A thousand repetitions
are called for, the number of trials meeting the criteria are counted, and the results are then
printed.

In addition to showing how this particular problem may be handled with Python, the “bullseye”
program teaches you some more fundamentals of computer programming. The if statement
and the two loops, one within the other, are basic tools of programming.
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Note 21: Notebook: Bullseye

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

# Make an array to store the results of each trial.
white_counts = np.zeros(10000)

# Do 10000 experimental trials
for i in range(10000):

# To represent 3 shots, generate 3 numbers at random between "1" and "10"
# and put them in a. We will let a "1" denote a bullseye, "2"-"7" a shot in
# the white, and "8"-"10" a miss.
a = rnd.integers(1, 11, size=3)

# Count the number of bullseyes, put that result in b.
b = np.sum(a == 1)

# If there is exactly one bullseye, we will continue with counting the
# other shots. (If there are no bullseyes, we need not bother — the
# outcome we are interested in has not occurred.)
if b == 1:

# Count the number of shots in the white, put them in c. (Recall we are
# doing this only if we got one bullseye.)
c = np.sum((a >= 2) & (a <=7))

# Keep track of the results of this second count.
white_counts[i] = c

# End the "if" sequence — we will do the following steps without regard
# to the "if" condition.

# End the above experiment and repeat it until 10000 repetitions are
# complete, then continue.

# Count the number of occasions on which there are two in the white and a
# bullseye.
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n_desired = np.sum(white_counts == 2)

# Convert to a proportion.
prop_desired = n_desired / 10000

# Print the results.
print(prop_desired)

0.1052

End of notebook: Bullseye

bullseye starts at Note 21.

This example illustrates the addition rule that was introduced and discussed in Chapter 9.
In Section 12.9, a bullseye, an in-the-white shot, and a missed shot are “mutually exclusive”
events because a single shot cannot result in more than one of the three possible outcomes.
One can calculate the probability of either of two mutually-exclusive outcomes by adding their
probabilities. The probability of either a bullseye or a shot in the white is .1 + .6 = .7. The
probability of an arrow either in the white or a miss is .6 + .3 = .9. The logic of the addition
rule is obvious when we examine the random numbers given to the outcomes. Seven of 10
random numbers belong to “bullseye” or “in the white,” and nine of 10 belong to “in the
white” or “miss.”

12.10 Example: Two Groups of Heart Patients

We want to learn how likely it is that, by chance, group A would have as little as two deaths
more than group B — Table 12.3:

Table 12.3: Two Groups of Heart Patients

Live Die
Group A 79 11
Group B 21 9

This problem, phrased here as a question in probability, is the prototype of a problem in
statistics that we will consider later (which the conventional theory would handle with a “chi
square distribution”). We can handle it in either of two ways, as follows:

Approach A
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1. Put 120 balls into a bucket, 100 white (for live) and 20 black (for die).
2. Draw 30 balls randomly and assign them to Group B; the others are assigned to group

A.
3. Count the numbers of black balls in the two groups and determine whether Group A’s

excess “deaths” (= black balls), compared to Group B, is two or fewer (or what is
equivalent in this case, whether there are 11 or fewer black balls in Group A); if so, write
“Yes,” otherwise “No.”

4. Repeat steps 2 and 3 perhaps 10000 times and compute the proportion “Yes.”

A second way we shall think about this sort of problem may be handled as follows:

Approach B

1. Put 120 balls into a bucket, 100 white (for live) and 20 black (for die) (as before).
2. Draw balls one by one, replacing the drawn ball each time, until you have accumulated

90 balls for Group A and 30 balls for Group B. (You could, of course, just as well use a
bucket for 4 white and 1 black balls or 8 white and 2 black in this approach.)

3. As in approach “A” above, count the numbers of black balls in the two groups and
determine whether Group A’s excess deaths is two or fewer; if so, write “Yes,” otherwise
“No.”

4. As above, repeat steps 2 and 3 perhaps 10000 times and compute the proportion “Yes.”

We must also take into account the possibility of a similar eye-catching “unbalanced” result of
a much larger proportion of deaths in Group B. It will be a tough decision how to do so, but
a reasonable option is to simply double the probability computed in step 4a or 4b.

Deciding which of these two approaches — the “permutation” (without replacement) and
“bootstrap” (with replacement) methods — is the more appropriate is often a thorny matter;
it will be discussed latter in Chapter 24. In many cases, however, the two approaches will lead
to similar results.

Later, we will actually carry out these procedures with the aid of Python, and estimate the
probabilities we seek.

12.11 Example: Dispersion of a Sum of Random Variables —
Hammer Lengths — Heads and Handles

The distribution of lengths for hammer handles is as follows: 20 percent are 10 inches long, 30
percent are 10.1 inches, 30 percent are 10.2 inches, and 20 percent are 10.3 inches long. The
distribution of lengths for hammer heads is as follows: 2.0 inches, 20 percent; 2.1 inches, 20
percent; 2.2 inches, 30 percent; 2.3 inches, 20 percent; 2.4 inches, 10 percent.

If you draw a handle and a head at random, what will be the mean total length? In Chapter 9
we saw that the conventional formulaic method tells you that an answer with a formula that
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says the sum of the means is the mean of the sums, but it is easy to get the answer with
simulation. But now we ask about the dispersion of the sum. There are formulaic rules for
such measures as the variance. But consider this other example: What proportion of the
hammers made with handles and heads drawn at random will have lengths equal to or greater
than 12.4 inches? No simple formula will provide an answer. And if the number of categories
is increased considerably, any formulaic approach will be become burdensome if not undoable.
But Monte Carlo simulation produces an answer quickly and easily, as follows:

1. Fill a bucket with:

• 2 balls marked “10” (inches),
• 3 balls marked “10.1”,
• 3 marked “10.2”, and
• 2 marked “10.3”.

This bucket represents the handles.

Fill another bucket with:

• 2 balls marked “2.0”,
• 2 balls marked “2.1”,
• 3 balls marked “2.2”,
• 2 balls marked “2.3” and
• 1 ball marked “2.4”.

This bucket represents the heads.

2. Pick a ball from each of the “handles” and “heads” bucket, calculate the sum, and replace
the balls.

3. Repeat perhaps 200 times (more when you write a computer program), and calculate
the proportion of the sums that are greater than 12.4 inches.

You may also want to forego learning the standard “rule,” and simply estimate the mean this
way, also. As an exercise, compute the interquartile range — the difference between the 25th
and the 75th percentiles.

12.12 Example: The Product of Random Variables — Theft by
Employees

The distribution of the number of thefts per month you can expect in your business is as
follows:
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Number Probability
0 0.5
1 0.2
2 0.1
3 0.1
4 0.1

The amounts that may be stolen on any theft are as follows:

Amount Probability
$50 0.4
$75 0.4
$100 0.1
$125 0.1

The same procedure as used above to estimate the mean length of hammers — add the lengths
of handles and heads — can be used for this problem except that the results of the drawings
from each bucket are multiplied rather than added.

In this case there is again a simple rule: The mean of the products equals the product of the
means. But this rule holds only when the two urns are indeed independent of each other, as
they are in this case.

The next two problems are a bit harder than the previous ones; you might skip them for now
and come back to them a bit later. However, with the Monte Carlo simulation method they
are within the grasp of any introductory student who has had just a bit of experience with the
method. In contrast, a standard book whose lead author is Frederick Mosteller, as respected a
statistician as there is, says of this type of problem: “Naturally, in this book we cannot expect
to study such difficult problems in their full generality [that is, show how to solve them, rather
than merely state them], but we can lay a foundation for their study.” (Mosteller, Rourke, and
Thomas 1961, 5)

12.13 Example: Flipping Pennies to the End

Two players, each with a stake of ten pennies, engage in the following game: A coin is tossed,
and if it is (say) heads, player A gives player B a penny; if it is tails, player B gives player A
a penny. What is the probability that one player will lose his or her entire stake of 10 pennies
if they play for 200 tosses?
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This is a classic problem in probability theory; it has many everyday applications in situations
such as inventory management. For example, what is the probability of going out of stock of
a given item in a given week if customers and deliveries arrive randomly? It also is a model
for many processes in modern particle physics.

Solution of the penny-matching problem with coins is straightforward. Repeatedly flip a coin
and check if one player or the other reaches a zero balance before you reach 200 flips. Or with
random numbers:

1. Numbers “1-5” = head = “+1”; Numbers “6-0” = tail = “-1.”
2. Proceed down a series of 200 numbers, keeping a running tally of the “+1” ’s and the

“-1” ’s. If the tally reaches “+10” or “-10” on or before the two-hundredth digit, record
“yes”; otherwise record “no.”

3. Repeat step 2 perhaps 400 or 10000 times, and calculate the proportion of “yeses.” This
estimates the probability sought.

The following Python program also solves the problem. The heart of the program starts at the
line where the program models a coin flip with the statement: c = rnd.integers(1, 3) After
you study that, go back and notice the inner for loop starting with for j in range(200):
that describes the procedure for flipping a coin 200 times. Finally, note how the outer for i
in range(10000): loop simulates 10000 games, each game consisting of the 200 coin flips we
generated with the inner for loop above.

Note 22: Notebook: Simulating the pennies game

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

someone_won = np.zeros(10000)

# Do 10000 trials
for i in range(10000):

# Record the number 10: a's stake
a_stake = 10

# Same for b
b_stake = 10

# An indicator flag that will be set to "1" when somebody wins.
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flag = 0

# Repeat the following steps 200 times.
# Notice we use "j" as the counter variable, to avoid overwriting
# "i", the counter variable for the 10000 trials.
for j in range(200):

# Generate the equivalent of a coin flip, letting 1 = heads,
# 2 = tails
c = rnd.integers(1, 3)

# If it's a heads
if c == 1:

# Add 1 to b's stake
b_stake = b_stake + 1

# Subtract 1 from a's stake
a_stake = a_stake - 1

# End the "if" condition

# If it's a tails
if c == 2:

# Add one to a's stake
a_stake = a_stake + 1

# Subtract 1 from b's stake
b_stake = b_stake - 1

# End the "if" condition

# If a has won
if a_stake == 20:

# Set the indicator flag to 1
flag = 1

# If b has won
if b_stake == 20:

# Set the indicator flag to 1
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flag = 1

# End the repeat loop for 200 plays (note that the indicator flag stays at
# 0 if neither a nor b has won)

# Keep track of whether anybody won
someone_won[i] = flag

# End the 10000 trials

# Find out how often somebody won
n_wins = np.sum(someone_won)

# Convert to a proportion
prop_wins = n_wins / 10000

# Print the results
print(prop_wins)

0.8918

End of notebook: Simulating the pennies game

pennies starts at Note 22.

A similar example: Your warehouse starts out with a supply of twelve capacirators. Every
three days a new shipment of two capacirators is received. There is a .6 probability that a
capacirator will be used each morning, and the same each afternoon. (It is as if a random
drawing is made each half-day to see if a capacirator is used; two capacirators may be used in
a single day, or one or none). How long will be it, on the average, before the warehouse runs
out of stock?

12.14 Example: A Drunk’s Random Walk

If a drunk chooses the direction of each step randomly, will he ever get home? If he can only
walk on the road on which he lives, the problem is almost the same as the gambler’s-ruin
problem above (“pennies”). But if the drunk can go north-south as well as east-west, the
problem becomes a bit different and interesting.
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Looking now at Figure 12.1 — what is the probability of the drunk reaching either his house
(at 3 steps east, 2 steps north) or my house (1 west, 4 south) before he finishes taking twelve
steps?

One way to handle the problem would be to use a four-directional spinner such as is used with
a child’s board game, and then keep track of each step on a piece of graph paper. The reader
may construct a Python program as an exercise.

765432101234567

765432101234567

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

7

6

5

4

3

2

1

0

1

2

3

4

5

6

7

x

x

Myhouse
1W,4S

Hishouse
3E,2N

Figure 12.1: Drunk random walk

12.15 Example: public and private liquor pricing

Let’s end this chapter with an actual example that will be used again in Chapter 13 when
discussing probability in finite universes, and then at great length in the context of statistics
in Chapter 24. This example also illustrates the close connection between problems in pure
probability and those in statistical inference.

As of 1963, there were 26 U.S. states in whose liquor systems the retail liquor stores are
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privately owned, and 16 “monopoly” states where the state government owns the retail liquor
stores. (Some states were omitted for technical reasons.) These were the representative 1961
prices of a fifth of Seagram 7 Crown whiskey in the two sets of states (Table 12.6):

Table 12.6: Whiskey prices by state category

Private Government
4.82 4.65
5.29 4.55
4.89 4.11
4.95 4.15
4.55 4.2
4.9 4.55
5.25 3.8
5.3 4.0
4.29 4.19
4.85 4.75
4.54 4.74
4.75 4.5
4.85 4.1
4.85 4.0
4.5 5.05
4.75 4.2
4.79
4.85
4.79
4.95
4.95
4.75
5.2
5.1
4.8
4.29

Count 26 16
Mean 4.84 4.35

Let us consider that all these states’ prices constitute one single universe (an assumption whose
justification will be discussed later). If so, one can ask: If these 42 states constitute a single
universe, how likely is it that one would choose two samples at random, containing 16 and
26 observations, that would have prices as different as $.49 (the difference between the means
that was actually observed)?
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Figure 12.2: Whiskey prices by state category

This can be thought of as problem in pure probability because we begin with a known universe
and ask how it would behave with random drawings from it. We sample with replacement ;
the decision to do so, rather than to sample without replacement (which is the way I had
first done it, and for which there may be better justification) will be discussed later. We do
so to introduce a “bootstrap”-type procedure (defined later) as follows: Write each of the
forty-two observed state prices on a separate card. The shuffled deck simulated a situation
in which each state has an equal chance for each price. Repeatedly deal groups of 16 and 26
cards, replacing the cards as they are chosen, to simulate hypothetical monopoly-state and
private-state samples. For each trial, calculate the difference in mean prices.

These are the steps systematically:

• Step A: Write each of the 42 prices on a card and shuffle.
• Steps B and C (combined in this case): i) Draw cards randomly with replacement

into groups of 16 and 26 cards. Then ii) calculate the mean price difference between the
groups, and iii) compare the simulation-trial difference to the observed mean difference
of $4.84 - $4.35 = $.49; if it is as great or greater than $.49, write “yes,” otherwise “no.”

• Step D: Repeat step B-C a hundred or a thousand times. Calculate the proportion
“yes,” which estimates the probability we seek.

The probability that the postulated universe would produce a difference between groups as
large or larger than observed in 1961 is estimated by how frequently the mean of the group
of randomly-chosen sixteen prices from the simulated state-ownership universe is less than
(or equal to) the mean of the actual sixteen state-ownership prices. The following notebook
performs the operations described above.
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12.15.1 Concatenating arrays

Before we start the simulation, we need a little extra NumPy machinery.

In what follows, we are going to make an array for the 26 private prices, and another array for
the 16 government prices, and then concatenate these two arrays to make a new array with 26
+ 16 = 42 elements, where the first 26 elements are the private prices and the last 16 elements
are the government prices.

You will see that in action below, but this is what that concatenation looks like in NumPy for
some example arrays.

We use Numpy’s concatenate function to concatenate two arrays:

arr_a = np.array([1, 2, 3])
arr_b = np.array([10, 11, 12, 13])
# Use np.concatenate function to make new array consisting of elements in
# first array followed by elements in second array.
both = np.concatenate([arr_a, arr_b])
# Show the result.
both

array([ 1, 2, 3, 10, 11, 12, 13])

12.15.2 Plotting histograms

The other procedure we will use for the simulation, is graphing the results with a histogram.

Note 23: Notebook: Plotting histograms

• Download notebook
• Interact

A histogram is a visual way to show the distribution of a sequence of values.

We now enter the world of plotting in Python. As Numpy is a Python library for working with
arrays, Matplotlib is a library for making and showing plots.

To use the Numpy library, we import it. As you have seen, the usual convention is to make
the standard numpy library name easier to read and type, by renaming the library to np on
import, like this:

# Import numpy library and rename to "np"
import numpy as np
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In a similar way, we need to import the Matplotlib library. In fact we will be using a particular
part of the Matplotlib library, called pyplot.

We use the following standard convention to import the pyplot part of the Matplotlib library
and give it the shorter name of plt:

import matplotlib.pyplot as plt

Note 24: Modules and submodules

We have been calling Numpy and Matlotlib libraries, but technically, Python calls these
modules. Modules are collections of code and data that you can import into Python. For
example, Numpy (now renamed as np) is a module:

# Show type for the import Numpy module (renamed as "np").
type(np)

<class 'module'>

We can get elements contained in (attached to) a module using the . syntax. For example,
here we get the value of the pi variable, attached to the Numpy module.

# Get and show the value of the variable "pi" attached to (contained within)
# the Numpy module.
np.pi

3.141592653589793

One type of thing a module can contain, is other modules. These modules-attached-to-
modules are called submodules. Perhaps without knowing, you have already used the
random submodule attached to the Numpy module:

# "random" is itself a module, attached to (contained within) the Numpy
# module. It is therefore a "submodule" of Numpy.
type(np.random)

<class 'module'>

We used the default_rng function from the random submodule to create random number
generators:

rng = np.random.default_rng()
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pyplot is a submodule of Matplotlib.

# Reimport the module to remind ourselves of the import line.
import matplotlib.pyplot as plt
# plt is a new name we have set for the "pyplot" submodule of Matplotlib.
type(plt)

<class 'module'>

The pyplot submodule of Matplotlib has many useful functions for making and displaying
plots.

The easiest way to explain histograms is to show one.

Let’s start with a sequence of values we are interested in:

Here are the 24 values for whiskey prices in states that did not have a liquor monopoly (priv).

priv = np.array([
4.82, 5.29, 4.89, 4.95, 4.55, 4.90, 5.25, 5.30, 4.29, 4.85, 4.54, 4.75,
4.85, 4.85, 4.50, 4.75, 4.79, 4.85, 4.79, 4.95, 4.95, 4.75, 5.20, 5.10,
4.80, 4.29])

These are the 16 values for states with a liquor monopoly (govt):

govt = np.array([
4.65, 4.55, 4.11, 4.15, 4.20, 4.55, 3.80, 4.00, 4.19, 4.75, 4.74, 4.50,
4.10, 4.00, 5.05, 4.20])

We concatenate these values to get a sequence (an array) of all 40 liquor prices:

prices = np.concatenate([priv, govt])
prices

array([4.82, 5.29, 4.89, 4.95, 4.55, 4.9 , 5.25, 5.3 , 4.29, 4.85, 4.54,
4.75, 4.85, 4.85, 4.5 , 4.75, 4.79, 4.85, 4.79, 4.95, 4.95, 4.75,
5.2 , 5.1 , 4.8 , 4.29, 4.65, 4.55, 4.11, 4.15, 4.2 , 4.55, 3.8 ,
4. , 4.19, 4.75, 4.74, 4.5 , 4.1 , 4. , 5.05, 4.2 ])

We are interested in the distribution of these 40 values. To show the distribution, we can make
and show a histogram of these prices, using the hist function attached to the plt submodule
.
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hist_res = plt.hist(prices)
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plt.hist has calculated an array of suitable intervals (bins) to divide up the range of values,
and then counted how many values in prices fall into each interval (bin).

You will notice that plt.hist has sent back some results from the process of making the
histogram. In fact, the results are in the form of a list.

The first result of interest to us is the definition of the intervals (bins) into which the histogram
has divided the range of prices values.

In fact, plt.hist sent back the edges of these bins in the second element of hist_res:

# The second element in the results list is the array of bin edges.
bin_edges = hist_res[1]
bin_edges

array([3.8 , 3.95, 4.1 , 4.25, 4.4 , 4.55, 4.7 , 4.85, 5. , 5.15, 5.3 ])

Think of this array as the 10 values that start each of the 10 bins, followed by a final value
that ends the final bin.

This means that the first bin was from (including) 3.8 up to, but not including 3.95, the second
bin was from (including) 3.95 up to, but not including 4.1 and so on. The last bin is from
(including) 5.15 through (including) 5.3. Notice there are 11 edges, forming 10 bins.

Put another way, the edges that plt.hist sent back are the 10 left hand (inclusive) edges of
the 10 bins, and a final right hand (inclusive) edge of the final (10th) bin.
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The first element that comes back in the list of results is the array of counts of the values in
prices that fall within each bin.

# The first element in the results list is the counts of values falling into
# each bin.
counts = hist_res[0]
counts

array([1., 2., 6., 2., 3., 4., 9., 9., 2., 4.])

The values tell us that 1 value from prices fell in the range 3.8 up to (not including) 3.95
(were within the first bin), 2 values fell in the range 3.95 up to (not including) 4.1, and so
on.

That the counts correspond to the heights of the bars on the histogram, so the first bar has
height 1, the second bar has height 2, and so on.

By default, plt.hist assumes you want 10 bins, and uses its default method of calculation to
work out the edges for those 10 bins. You can specify another number of bins, by sending a
number to the bins argument of plt.hist. For example, you might want 20 bins:

results_20 = plt.hist(prices, bins=20)
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We now have 21 new edge values, the first 20 values giving the (inclusive) left-hand edges, and
the last giving the (inclusive) right hand edge of the last bin.
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bin_edges_20 = results_20[1]
bin_edges_20

array([3.8 , 3.875, 3.95 , 4.025, 4.1 , 4.175, 4.25 , 4.325, 4.4 ,
4.475, 4.55 , 4.625, 4.7 , 4.775, 4.85 , 4.925, 5. , 5.075,
5.15 , 5.225, 5.3 ])

We can also specify our own edges, in order to bypass plt.hists default algorithm to calculate
edges. For example, we might prefer 16 bins of width 0.1, starting at 3.8, giving edges like
this:

our_edges = 3.8 + np.arange(16) * 0.1
our_edges

array([3.8, 3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. ,
5.1, 5.2, 5.3])

We can send these directly to plt.hist to set the edges:

results_16 = plt.hist(prices, bins=our_edges)
# Show the edges that come back (these are the edges we sent).
results_16[1]

array([3.8, 3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. ,
5.1, 5.2, 5.3])
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If you are running the notebook interactively in Jupyter, running plt.hist on its own, as
below, will show the values as the result of the cell, along with the plot. (You won’t see these
results displayed in the textbook, because we use different software to show outputs when we
build the textbook).

# If we don't collect the results, Jupyter shows them to us,
# if this is the last expression in the cell.
# (You won't see the results displayed in the textbook).
plt.hist(prices)
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Interactive Jupyter will display the returned list of results, because we have not collected the
results by assigning them to a variable. More technically, on its own, the plt.hist line is an
expression (code that results in a value), and Jupyter will, by default, display the results of an
expression that ends the code in a cell.

It can be distracting to see a display of the results list from a plotting cell, so from now on we
will suppress Jupyter’s default behavior of displaying the results list from plt.hist, by adding
a semi-colon at the end of the code line, as in the cell below. (Remember, in the textbook,
but not in Jupyter, this will give the same result as plt.hist(prices) above, because of the
display system we use for the textbook.)

plt.hist(prices); # Note the semi-colon
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The semi-colon is a standard indicator to Jupyter that it should not display the results that
came back from the function call. We will use it to suppress the display of various values that
come back from these functions, as they are usually not of immediate interest.

End of notebook: Plotting histograms

on_histograms starts at Note 23.

12.15.3 Price simulation

Now we have the machinery to concatenate arrays, and make histograms, we are ready to do
the price simulation.

Note 25: Notebook: Public and private liquor prices

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

# Import the plotting library
import matplotlib.pyplot as plt
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fake_diffs = np.zeros(10000)

priv = np.array([
4.82, 5.29, 4.89, 4.95, 4.55, 4.90, 5.25, 5.30, 4.29, 4.85, 4.54, 4.75,
4.85, 4.85, 4.50, 4.75, 4.79, 4.85, 4.79, 4.95, 4.95, 4.75, 5.20, 5.10,
4.80, 4.29])

govt = np.array([
4.65, 4.55, 4.11, 4.15, 4.20, 4.55, 3.80, 4.00, 4.19, 4.75, 4.74, 4.50,
4.10, 4.00, 5.05, 4.20])

actual_diff = np.mean(priv) - np.mean(govt)

# Join the two arrays of data into one array.
both = np.concatenate([priv, govt])

# Repeat 10000 simulation trials
for i in range(10000):

# Sample 26 with replacement for private group
fake_priv = np.random.choice(both, size=26)

# Sample 16 with replacement for govt. group
fake_govt = np.random.choice(both, size=16)

# Find the mean of the "private" group.
p = np.mean(fake_priv)

# Mean of the "govt." group
g = np.mean(fake_govt)

# Difference in the means
diff = p - g

# Keep score of the trials
fake_diffs[i] = diff

# Graph of simulation results to compare with the observed result.
plt.hist(fake_diffs)
plt.xlabel('Difference in average prices (cents)')
plt.title('Average price difference (Actual difference = '
f'{actual_diff * 100:.0f} cents)');
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End of notebook: Public and private liquor prices

liquor_prices starts at Note 25.

The results shown above — not even one “success” in 10,000 trials — imply that there is only
a very small probability that two groups with mean prices as different as were observed would
happen by chance if drawn with replacement from the universe of 42 observed prices.

Here we think of these states as if they came from a non-finite universe, which is one possible
interpretation for one particular context. However, in Chapter 13 we will postulate a finite
universe, which is appropriate if it is reasonable to consider that these observations consti-
tute the entire universe (aside from those states excluded from the analysis because of data
complexities).

12.16 The general procedure

Chapter 25 generalizes what we have done in the probability problems above into a general
procedure, which will in turn be a subpart of a general procedure for all of resampling.
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13 Probability Theory, Part 4: Estimating
Probabilities from Finite Universes

13.1 Introduction

The examples in Chapter 12 dealt with infinite universes, in which the probability of a given
simple event is unaffected by the outcome of the previous simple event. But now we move
on to finite universes, situations in which you begin with a given set of objects whose number
is not enormous — say, a total of two, or two hundred, or two thousand. If we liken such
a situation to a bucket containing balls of different colors each with a number on it, we are
interested in the probability of drawing various sets of numbered and colored balls from the
bucket on the condition that we do not replace balls after they are drawn.

In the cases addressed in this chapter, it is important to remember that the single events no
longer are independent of each other. A typical situation in which sampling without replace-
ment occurs is when items are chosen from a finite universe — for example, when children are
selected randomly from a classroom. If the class has five boys and five girls, and if you were
to choose three girls in a row, then the chance of selecting a fourth girl on the next choice
obviously is lower than the chance that you would pick a girl on the first selection.

The key to dealing with this type of problem is the same as with earlier problems: You must
choose a simulation procedure that produces simple events having the same probabilities as
the simple events in the actual problem involving sampling without replacement. That is, you
must make sure that your simulation does not allow duplication of events that have already
occurred. The easiest way to sample without replacement with resampling techniques is by
simply ignoring an outcome if it has already occurred.

Examples Section 13.3.1 through Section 13.3.10 deal with some of the more important sorts
of questions one may ask about drawings without replacement from such an urn. To get
an overview, I suggest that you read over the summaries (in bold) introducing examples
Section 13.3.1 to Section 13.3.10 before beginning to work through the examples themselves.

This chapter also revisits the general procedure used in solving problems in probability and
statistics with simulation, here in connection with problems involving a finite universe. The
steps that one follows in simulating the behavior of a universe of interest are set down in such
fashion that one may, by random drawings, deduce the probability of various events. Having
had by now the experience of working through the problems in Chapter 9 and Chapter 12, the
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reader should have a solid basis to follow the description of the general procedure which then
helps in dealing with specific problems.

Let us begin by describing some of the major sorts of problems with the aid of a bucket with
six balls.

13.2 Some building-block programs

Case 1. Each of six balls is labeled with a number between “1” and “6.” We ask: What is
the probability of choosing balls 1, 2, and 3 in that order if we choose three balls without
replacement? Figure 13.1 diagrams the events we consider “success.”

pick#:123

5

1

231

3

426

Figure 13.1: The Event Classified as “Success” for Case 1

Case 2. We begin with the same bucket as in Case 1, but now ask the probability of choosing
balls 1, 2, and 3 in any order if we choose three balls without replacement. Figure 13.2
diagrams two of the events we consider success. These possibilities include that which is
shown in Figure 13.1 above, plus other possibilities.

Case 3. The odd-numbered balls “1,” “3,” and “5,” are painted red and the even-numbered
balls “2,” “4,” and “6” are painted black. What is the probability of getting a red ball and
then a black ball in that order? Some possibilities are illustrated in Figure 13.3, which includes
the possibility shown in Figure 13.1. It also includes some but not all possibilities found in
Figure 13.2; for example, Figure 13.2 includes choosing balls 2, 3 and 1 in that order, but
Figure 13.3 does not.

Case 4. What is the probability of getting two red balls and one black ball in any order?

Case 5. Various questions about matching may be asked with respect to the six balls. For
example, what is the probability of getting ball 1 on the first draw or ball 2 on the second
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Figure 13.2: An Incomplete List of the Events Classified as “Success” for Case 2
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Figure 13.3: An Incomplete List of the Events Classified as “Success” for Case 3
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Figure 13.4: An Incomplete List of the Events Classified as “Success” for Case 4

draw or ball 3 on the third draw? (Figure 13.5) Or, what is the probability of getting all balls
on the draws corresponding to their numbers?

13.3 Problems in finite universes

13.3.1 Example: four girls and one boy

What is the probability of selecting four girls and one boy when selecting five
students from any group of twenty-five girls and twenty-five boys? This is an example
of sampling without replacement when there are two outcomes and the order does not matter.

The important difference between this example and the infinite-universe examples in the prior
chapter is that the probability of obtaining a boy or a girl in a single simple event differs from
one event to the next in this example, whereas it stays the same when the sampling is with
replacement. To illustrate, the probability of a girl is .5 (25 out of 50) when the first student is
chosen, but the probability of a girl is either 25/49 or 24/49 when the second student is chosen,
depending on whether a boy or a girl was chosen on the first pick. Or after, say, three girls
and one boy are picked, the probability of getting a girl on the next choice is (28-3)/(50-4) =
22/46 which is clearly not equal to .5.

As always, we must create a satisfactory analog to the process whose probability we want to
learn. In this case, we can use a deck of 50 cards, half red and half black, and deal out five
cards without replacing them after each card is dealt; this simulates the choice of five students
from among the fifty.
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Figure 13.5: An Incomplete List of the Events Classified as “Success” for Case 5
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We can no longer use our procedure from before. If we designated “1-25” as being girls and
“26-50” as being boys and then proceeded to draw random numbers, the probability of a girl
would be the same on each pick.

At this point, it is important to note that — for this particular problem — we do not need to
distinguish between particular girls (or boys). That is, it does not matter which girl (or boy)
is selected in a given trial. Nor did we pay attention to the order in which we selected girls
or boys. This is an instance of Case 4 discussed above. Subsequent problems will deal with
situations where the order of selection, and the particular individuals, do matter.

Our approach then is to mimic having the class in front of us: an array of 50 strings, half of
the entries ‘boy’ and the other half ‘girl’. We then shuffle the class (the array), and choose the
first N students (strings).

• Step 1. Create a list with 50 labels, half ‘boy’ and half ‘girl’.
• Step 2. Shuffle the class and select five students. Count whether there are four labels

equal ‘girl’. If so, write “yes,” otherwise “no”.
• Step 3. Repeat step 2, say, 10,000 times, and count the proportion “yes”, which esti-

mates the probability sought.

The results of a few experimental trials are shown in Table 13.1.

Table 13.1: A few experimental trials of four girls and one boy

Experiment Strings Chosen Success?
1 ‘girl’, ‘boy’, ‘boy’, ‘girl’, ‘boy’ No
2 ‘boy’, ‘girl’, ‘girl’, ‘girl’, ‘girl’ Yes
3 ‘girl, ’girl’, ‘girl’, ‘boy’, ‘girl’ Yes

A solution to this problem with Python is presented below.

Note 26: Notebook: Four girls and one boy

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()
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N = 10000
trial_results = np.zeros(N)

# Constitute the set of 25 girls and 25 boys.
whole_class = np.repeat(['girl', 'boy'], [25, 25])

# Repeat the following steps N times.
for i in range(N):

# Shuffle the numbers
shuffled = rnd.permuted(whole_class)

# Take the first 5 numbers, call them c.
c = shuffled[:5]

# Count how many girls there are, put the result in d.
d = np.sum(c == 'girl')

# Keep track of each trial result in z.
trial_results[i] = d

# End the experiment, go back and repeat until all 1000 trials are
# complete.

# Count the number of times we got four girls, put the result in k.
k = np.sum(trial_results == 4)

# Convert to a proportion.
kk = k / N

# Print the result.
print(kk)

0.1505

We can also find the probabilities of other outcomes from a histogram of trial results obtained
with the following command:

# Import the plotting package.
import matplotlib.pyplot as plt
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# Do histogram, with one bin for each possible number.
plt.hist(trial_results, bins=range(7), align='left', rwidth=0.75)
plt.title('# of girls');
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In the resulting histogram we can see that in 15 percent of the trials, 4 of the 5 selected were
girls.

It should be noted that for this problem — as for most other problems — there are several
other resampling procedures that will also do the job correctly.

In analytic probability theory this problem is worked with a formula for “combinations.”

End of notebook: Four girls and one boy

four_girls_one_boy starts at Note 26.

13.3.2 Example: Five spades and four clubs in a bridge hand

Note 27: Notebook: Five spades and four clubs

• Download notebook
• Interact

This is an example of multiple-outcome sampling without replacement, order does
not matter.
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The problem is similar to the example in Section 13.3.1, except that now there are four equally-
likely outcomes instead of only two. A Python solution is:

import numpy as np

rnd = np.random.default_rng()

# Constitute the deck of 52 cards.
# Repeat the suit names 13 times each, to make a 52 card deck.
deck = np.repeat(['spade', 'club', 'diamond', 'heart'],

[13, 13, 13, 13])
# Show the deck
deck

array(['spade', 'spade', 'spade', 'spade', 'spade', 'spade', 'spade',
'spade', 'spade', 'spade', 'spade', 'spade', 'spade', 'club',
'club', 'club', 'club', 'club', 'club', 'club', 'club', 'club',
'club', 'club', 'club', 'club', 'diamond', 'diamond', 'diamond',
'diamond', 'diamond', 'diamond', 'diamond', 'diamond', 'diamond',
'diamond', 'diamond', 'diamond', 'diamond', 'heart', 'heart',
'heart', 'heart', 'heart', 'heart', 'heart', 'heart', 'heart',
'heart', 'heart', 'heart', 'heart'], dtype='<U7')

N = 10000
trial_results = np.zeros(N)

# Repeat the trial N times.
for i in range(N):

# Shuffle the deck and draw 13 cards.
hand = rnd.choice(deck, size=13, replace=False)

# Count the number of spades in "hand", put the result in "n_spades".
n_spades = np.sum(hand == 'spade')

# If we have five spades, we'll continue on to count the clubs. If we don't
# have five spades, the number of clubs is irrelevant — we have not gotten
# the hand we are interested in.
if n_spades == 5:

# Count the clubs, put the result in "n_clubs"
n_clubs = np.sum(hand == 'club')
# Keep track of the number of clubs in each trial
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trial_results[i] = n_clubs

# End one experiment, go back and repeat until all N trials are done.

# Count the number of trials where we got 4 clubs. This is the answer we want -
# the number of hands out of 1000 with 5 spades and 4 clubs. (Recall that we
# only counted the clubs if the hand already had 5 spades.)
n_5_and_4 = np.sum(trial_results == 4)

# Convert to a proportion.
prop_5_and_4 = n_5_and_4 / N

# Print the result
print(prop_5_and_4)

0.0224

End of notebook: Five spades and four clubs

five_spades_four_clubs starts at Note 27.

13.3.3 Example: a total of fifteen points in a bridge hand

Note 28: Notebook: Fifteen points in a bridge hand

• Download notebook
• Interact

Let us assume that ace counts as 4, king = 3, queen = 2, and jack = 1.

import numpy as np

rnd = np.random.default_rng()

import matplotlib.pyplot as plt
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# Constitute a deck with 4 jacks (point value 1), 4 queens (value 2), 4
# kings (value 3), 4 aces (value 4), and 36 other cards with no point
# value
whole_deck = np.repeat([1, 2, 3, 4, 0], [4, 4, 4, 4, 36])
whole_deck

array([1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0])

N = 10000
trial_results = np.zeros(N)

# Do N trials.
for i in range(N):

# Shuffle the deck of cards and draw 13
hand = rnd.choice(whole_deck, size=13, replace=False)

# Total the points.
points = np.sum(hand)

# Keep score of the result.
trial_results[i] = points

# End one experiment, go back and repeat until all N trials are done.

# Produce a histogram of trial results.
plt.hist(trial_results, bins=range(25), align='left', rwidth=0.75)
plt.title('Points in bridge hands');
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From this histogram, we see that in about 4 percent of our trials we obtained a total of exactly
15 points. We can also compute this directly:

# How many times did we have a hand with fifteen points?
k = np.sum(trial_results == 15)

# Convert to a proportion.
kk = k / N

# Show the result.
kk

np.float64(0.0431)

End of notebook: Fifteen points in a bridge hand

fifteen_points_in_bridge starts at Note 28.
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13.3.4 Example: Four girls then one boy from 25 girls and 25 boys

Note 29: Notebook: Four girls then one boy from 25/25

• Download notebook
• Interact

In this problem, order matters; we are sampling without replacement, with two
outcomes, several of each item.

What is the probability of getting an ordered series of four girls and then one boy, from a
universe of 25 girls and 25 boys? This illustrates Case 3 above. Clearly we can use the same
sampling mechanism as in the example Section 13.3.1, but now we record “yes” for a smaller
number of composite events.

We record “no” even if a single one boy is chosen but he is chosen 1st, 2nd, 3rd, or 4th, whereas
in Section 13.3.1, such outcomes are recorded as “yes”-es.

• Step 1. Generate a class (array) of length 50, consisting of 25 strings valued “boy” and
25 strings valued “girl”.

• Step 2. Shuffle the class array, and select the first five elements.
• Step 3. If the first five elements are exactly 'girl', 'girl', 'girl', 'girl',

'boy', write “yes,” otherwise “no.”
• Step 4. Repeat steps 2 and 3, say, 10,000 times, and count the proportion of “yes”

results, which estimates the probability sought.

Let us start the single trial procedure like so:

import numpy as np

rnd = np.random.default_rng()

# Constitute the set of 25 girls and 25 boys.
whole_class = np.repeat(['girl', 'boy'], [25, 25])

# Shuffle the class into a random order.
shuffled = rnd.permuted(whole_class)
# Take the first 5 class members, call them c.
c = shuffled[:5]
# Show the result.
c

array(['boy', 'girl', 'boy', 'girl', 'girl'], dtype='<U4')
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Our next step (step 3) is to check whether c is exactly equal to the result of interest. The
result of interest is:

# The result we are looking for - four girls and then a boy.
result_of_interest = np.repeat(['girl', 'boy'], [4, 1])
result_of_interest

array(['girl', 'girl', 'girl', 'girl', 'boy'], dtype='<U4')

We can then use an array comparison with == to do an element by element (elementwise)
check, asking whether the corresponding elements are equal:

# A Boolean array, with True where corresponding elements are equal, False
# otherwise.
are_equal = c == result_of_interest
are_equal

array([False, True, False, True, False])

We are nearly finished with step 3 — it only remains to check whether all of the elements were
equal, by checking whether all of the values in are_equal are True.

We know that there are 5 elements, so we could check whether there are 5 True values with
np.sum:

# Are there exactly 5 True values in `are_equal`?
np.sum(are_equal) == 5

np.False_

Another way to ask the same question is by using the np.all function on are_equal. This
returns True if all the elements in are_equal are True, and False otherwise.

Note 30: Testing whether all elements of an array are the same

The np.all, applied to a Boolean array (as here), checks whether all of the elements in
the Boolean array are True. If so, it returns True, otherwise, it returns False.
For example:
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# All elements are True, `np.all` returns True
np.all([True, True, True, True])

np.True_

# At least one element is False, `np.all` returns False
np.all([True, True, False, True])

np.False_

Here is the full procedure for steps 2 and 3 (a single trial):

# Shuffle the class into a random order.
shuffled = rnd.permuted(whole_class)
# Take the first 5 class members, call them c.
c = shuffled[:5]
# For each element, test whether the result is the result of interest.
are_equal = c == result_of_interest
# Check whether we have the result we are looking for.
is_four_girls_then_one_boy = np.all(are_equal)

All that remains is to put the single trial procedure into a loop.

N = 10000
trial_results = np.zeros(N)

# Repeat the following steps 1000 times.
for i in range(N):

# Shuffle the class into a random order.
shuffled = rnd.permuted(whole_class)
# Take the first 5 class members, call them c.
c = shuffled[:5]
# For each element, test whether the result is the result of interest.
are_equal = c == result_of_interest
# Check whether we have the result we are looking for.
is_four_girls_then_one_boy = np.all(are_equal)

# Store the result of this trial.
trial_results[i] = is_four_girls_then_one_boy
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# End the experiment, go back and repeat until all N trials are
# complete.

# Count the number of times we got four girls then a boy
k = np.sum(trial_results)

# Convert to a proportion.
kk = k / N

# Print the result.
print(kk)

0.0311

This type of problem is conventionally done with a permutation formula.

End of notebook: Four girls then one boy from 25/25

four_girls_then_one_boy_25 starts at Note 29.

13.3.5 Example: repeat pairings from random pairing

Note 31: Notebook: An icebreaker for two universities

• Download notebook
• Interact

First put two groups of 10 people into 10 pairs. Then re-randomize the pairings.
What is the chance that four or more pairs are the same in the second random
pairing? This is a problem in the probability of matching by chance.

Ten representatives each from two universities, Birmingham and Berkeley, attend a meeting.
As a social icebreaker, representatives are divided, randomly, into pairs consisting of one person
from each university.

If they held a second round of the icebreaker, with a new random pairing, what is the chance
that four or more pairs will be the same?

In approaching this problem, we start at the point where the first icebreaker is complete. We
now have to determine what happens after the second round.
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• Step 1. Let “ace” through “10” of hearts represent the ten representatives from Birm-
ingham University. Let “ace” through “10” of spades be their allocated partners (in
round one) from Berkeley.

• Step 2. Shuffle the hearts and deal them out in a row; shuffle the spades and deal in a
row just below the hearts.

• Step 3. Count the pairs — a pair is one card from the heart row and one card from
the spade row — that contain the same denomination. If 4 or more pairs match, record
“yes,” otherwise “no.”

• Step 4. Repeat steps (2) and (3), say, 10,000 times.
• Step 5. Count the proportion “yes.” This estimates the probability of 4 or more pairs.

Exercise for the student: Write the steps to do this example with random numbers. The
Python solution follows below.

import numpy as np

rnd = np.random.default_rng()

import matplotlib.pyplot as plt

N = 10000
trial_results = np.zeros(N)

# Assign numbers to each student, according to their pair, after the first
# icebreaker
birmingham = np.arange(10)
berkeley = np.arange(10)

for i in range(N):
# Randomly shuffle the students from Berkeley
shuffled_berkeley = rnd.permuted(berkeley)

# Randomly shuffle the students from Birmingham
# (This step is not really necessary — shuffling one array is enough to make the matching random.)
shuffled_birmingham = rnd.permuted(birmingham)

# Count in how many cases people landed with the same person as in the
# first round, and store in trial_results.
matches = np.sum(shuffled_berkeley == shuffled_birmingham)
trial_results[i] = matches

# Count the number of times we got 4 or more people assigned to the same person
k = np.sum(trial_results >= 4)
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# Convert to a proportion.
kk = k / N

# Print the result.
print(kk)

0.0165

We see that in about 2 percent of the trials did 4 or more couples end up being re-paired with
their own partners. This can also be seen from the histogram:

# Produce a histogram of trial results.
plt.hist(trial_results, bins=range(10), align='left', rwidth=0.75)
plt.title('Same pairs in round two');
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End of notebook: An icebreaker for two universities

university_icebreaker starts at Note 31.
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13.3.6 Example: Matching Santa Hats

Note 32: Notebook: Santas’ hats

• Download notebook
• Interact

The welcome staff at a restaurant mix up the hats of a party of six Christmas
Santas. What is the probability that at least one will get their own hat?.

After a long Christmas day, six Santas meet in the pub to let off steam. However, as luck
would have it, their hosts have mixed up their hats. When the hats are returned, what is the
chance that at least one Santa will get his own hat back?

First, assign each of the six Santas a number, and place these numbers in an array. Next,
shuffle the array (this represents the mixed-up hats) and compare to the original. The rest of
the problem is the same as the pairs one from before, except that we are now interested in any
trial where at least one (≥ 1) Santa received the right hat.

import numpy as np

rnd = np.random.default_rng()

N = 10000
trial_results = np.zeros(N, dtype=bool)

# Assign numbers to each owner
owners = np.arange(6)

# Each hat gets the number of their owner
hats = np.arange(6)

for i in range(N):
# Randomly shuffle the hats and compare to their owners
shuffled_hats = rnd.permuted(hats)

# In how many cases did at least one person get their hat back?
trial_results[i] = np.sum(shuffled_hats == owners) >= 1

# How many times, over all trials, did at least one person get their hat back?
k = np.sum(trial_results)

# Convert to a proportion.
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kk = k / N

# Print the result.
print(kk)

0.6391

We see that in roughly 64 percent of the trials at least one Santa received their own hat back.

End of notebook: Santas’ hats

santas_hats starts at Note 32.

13.3.7 Example: Twenty executives assigned to two divisions of a firm

Note 33: Notebook: Twenty executives, two divisions

• Download notebook
• Interact

The top manager wants to spread the talent reasonably evenly, but she does not want to label
particular executives with a quality rating and therefore considers distributing them with a
random selection. She therefore wonders: What are probabilities of the best ten among the
twenty being split among the divisions in the ratios 5 and 5, 4 and 6, 3 and 7, etc., if their
names are drawn from a hat? One might imagine much the same sort of problem in choosing
two teams for a football or baseball contest.

One may proceed as follows:

1. Put 10 balls labeled “W” (for “worst”) and 10 balls labeled “B” (best) in a bucket.
2. Draw 10 balls without replacement and count the W’s.
3. Repeat (say) 400 times.
4. Count the number of times each split — 5 W’s and 5 B’s, 4 and 6, etc. — appears in

the results.

The problem can be done with Python as follows:
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import numpy as np

rnd = np.random.default_rng()

import matplotlib.pyplot as plt

N = 10000
trial_results = np.zeros(N)

managers = np.repeat(['Worst', 'Best'], [10, 10])

for i in range(N):
chosen = rnd.choice(managers, size=10, replace=False)
trial_results[i] = np.sum(chosen == 'Best')

plt.hist(trial_results, bins=range(10), align='left', rwidth=0.75)
plt.title('Number of best managers chosen')
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End of notebook: Twenty executives, two divisions

twenty_executives starts at Note 33.
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13.3.8 Example: Executives Moving

A major retail chain moves its store managers from city to city every three years in order to
calculate individuals’ knowledge and experience. To make the procedure seem fair, the new
locations are drawn at random. Nevertheless, the movement is not popular with managers’
families. Therefore, to make the system a bit sporting and to give people some hope of
remaining in the same location, the chain allows managers to draw in the lottery the same
posts they are now in. What are the probabilities that 1, 2, 3 … will get their present posts
again if the number of managers is 30?

The problem can be solved with the following steps:

1. Number a set of green balls from “1” to “30” and put them into Bucket A. Number a
set of red balls from “1” to “30” and then put into Bucket B. For greater concreteness
one could use 30 little numbered dolls in Bucket A and 30 little toy houses in Bucket B.

2. Shuffle Bucket A, and array all its green balls into a row (vector A). Array all the red
balls from Bucket B into a second row B just below row A.

3. Count how many green balls in row A have the same numbers as the red balls just below
them, and record that number on a scoreboard.

4. Repeat steps 2 and 3 perhaps 1000 times. Then count in the scoreboard the numbers of
“0,” “1,” “2,” “3.”

13.3.9 Example: State Liquor Systems Again

Let’s end this chapter with the example of state liquor systems that we first examined in
Chapter 12 and which will be discussed again later in the context of problems in statistics.

Remember that as of 1963, there were 26 U.S. states in whose liquor systems the retail liquor
stores are privately owned (“Private”), and 16 monopoly states where the state government
owns the retail liquor stores (“Government”). See Table 12.6 for the prices in the Private and
Government states.

We found the average prices were:

• Private: $4.35;
• Government: $4.84;
• Difference (Government - Private): $0.49.

Let us now consider that all these states’ prices constitute one single finite universe. We ask:
If these 42 states constitute a universe, and if they are all shuffled together, how likely is it that
if one divides them into two samples at random (sampling without replacement), containing
16 and 26 observations respectively, the difference in mean prices turns out to be as great as
$0.49 (the difference that was actually observed)?
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Again we write each of the forty-two observed state prices on a separate card. The shuffled
deck simulates a situation in which each state has an equal chance for each price. Repeatedly
deal groups of 16 and 26 cards, without replacing the cards as they are chosen, to simulate
hypothetical monopoly-state and private-state samples. In each trial calculate the difference
in mean prices.

The steps more systematically:

• Step A. Write each of the 42 prices on a card and shuffle.
• Steps B and C (combined in this case). i) Draw cards randomly without replace-

ment into groups of 16 and 26 cards. Then ii) calculate the mean price difference between
the groups, and iii) compare the simulation-trial difference to the observed mean differ-
ence of $4.84 - $4.35 = $0.49; if it is as great or greater than $0.49, write “yes,” otherwise
“no.”

• Step D. Repeat step B-C a hundred or a thousand times. Calculate the proportion
“yes,” which estimates the probability we seek.

The probability that the postulated universe would produce a difference between groups as
large or larger than observed in 1961 is estimated by how frequently the mean of the group
of randomly-chosen sixteen prices from the simulated state ownership universe is less than (or
equal to) the mean of the actual sixteen state-ownership prices.

Please notice how the only difference between this treatment of the problem and the treatment
in Chapter 12 is that the drawing in this case is without replacement whereas in Chapter 12
the drawing is with replacement.

In Chapter 12 we thought of these states as if they came from a non-finite universe, which is
one possible interpretation in one context. But one can also reasonably think about them in
another context — as if they constitute the entire universe (aside from those states excluded
from the analysis because of data complexities). If so, one can ask: If these 42 states constitute
a universe, how likely is it that one would choose two samples at random, containing 16 and
26 observations, that would have prices as different as $.49 (the difference that was actually
observed)?

13.3.10 Example: Five or More Spades in One Bridge Hand; Four Girls and a Boy

Note 34: Notebook: Five spades, four girls

• Download notebook
• Interact

This is a compound problem: what are the chances of both five or more spades in one bridge
hand, and four girls and a boy in a five-child family?

273

https://resampling-stats.github.io/edition-3-python/notebooks/five_spades_four_girls.ipynb
https://resampling-stats.github.io/edition-3-python/interact/lab/index.html?path=five_spades_four_girls.ipynb


“Compound” does not necessarily mean “complicated”. It means that the problem is a com-
pound of two or more simpler problems.

A natural way to handle such a compound problem is in stages, as we saw in the archery
problem of Section 12.9. If a “success” is achieved in the first stage, go on to the second stage;
if not, don’t go on. More specifically in this example:

• Step 1. Use a bridge card deck, and five coins with heads = “girl”.
• Step 2. Deal a 13-card bridge hand and count the spades. If 5 or more spades, record

“no” and end the experimental trial. Otherwise, continue to step 3.
• Step 3. Throw five coins, and count “heads.” If four heads, record “yes,” otherwise

record “no.”
• Step 4. Repeat steps 2 and 3 a thousand times.
• Step 5. Compute the proportion of “yes” in step 3. This estimates the probability

sought.

The Python solution to this compound problem is neither long nor difficult. We tackle it
almost as if the two parts of the problem were to be dealt with separately. We first determine,
in a random bridge hand, whether 5 spades or more are dealt, as was done in the problem
Section 13.3.2. Then, if 5 or more spades are found, we use rnd.choice to generate a random
family of 5 children. This means that we need not generate families if 5 or more spades were
not dealt to the bridge hand, because a “success” is only recorded if both conditions are met.
After we record the number of girls in each sample of 5 children, we need only finish the loop
(by unindenting the next line) and then use np.sum to count the number of samples that had
4 girls, storing the result in k. Since we only drew samples of children for those trials in which
a bridge hand of 5 spades had already been dealt, k will have the number of trials out of 10000
in which both conditions were met.

import numpy as np

rnd = np.random.default_rng()

N = 10000
trial_results = np.zeros(N)

# Deck with 13 spades and 39 other cards
deck = np.repeat(['spade', 'others'], [13, 52 - 13])

for i in range(N):
# Shuffle deck and draw 13 cards
hand = rnd.choice(deck, size=13, replace=False)

n_spades = np.sum(hand == 'spade')
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if n_spades >= 5:
# Generate a family, zeros for boys, ones for girls
children = rnd.choice(['girl', 'boy'], size=5)
n_girls = np.sum(children == 'girl')
trial_results[i] = n_girls

k = np.sum(trial_results == 4)

kk = k / N

print(kk)

0.0282

Here is an alternative approach to the same problem, but getting the result at the end of the
loop, by combining Boolean arrays (see Section 10.6).

N = 10000
trial_spades = np.zeros(N)
trial_girls = np.zeros(N)

# Deck with 13 spades and 39 other cards
deck = np.repeat(['spade', 'other'], [13, 39])

for i in range(N):
# Shuffle deck and draw 13 cards
hand = rnd.choice(deck, 13, replace=False)

n_spades = np.sum(hand == 'spade')
trial_spades[i] = n_spades

# Generate a family, zeros for boys, ones for girls
children = rnd.choice(['girl', 'boy'], size=5)
n_girls = np.sum(children == 'girl')
trial_girls[i] = n_girls

k = np.sum((trial_spades >= 5) & (trial_girls == 4))

kk = k / N

print(kk)
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0.0264

End of notebook: Five spades, four girls

five_spades_four_girls starts at Note 34.

Speed and readability

The last version is a fraction more expensive, but has the advantage that the condition
we are testing for is summarized on one line. However, this would not be a good approach
to take if the experiments were not completely unrelated.

13.4 Summary

This completes the discussion of problems in probability — that is, problems where we assume
that the structure is known. Whereas Chapter 12 dealt with samples drawn from universes con-
sidered not finite, this chapter deals with problems drawn from finite universes and therefore
you sample without replacement.
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14 On Variability in Sampling

[Debra said]: “I’ve had such good luck with Japanese cars and poor luck with
American...”

The ’65 Ford Mustang: “It was fun, but I had to put two new transmissions in it.”

The Ford Torino: “That got two transmissions too. That finished me with Ford.”

The Plymouth Horizon: “The disaster of all disasters. That should’ve been painted
bright yellow. What a lemon.”

(From Washington Post Magazine, May 17, 1992, p. 19)

Do the quotes above convince you that Japanese cars are better than American? Has Debra
got enough evidence to reach the conclusion she now holds? That sort of question, and the
reasoning we use to address it, is the subject of this chapter.

More generally, how should one go about using the available data to test the hypothesis
that Japanese cars are better? That is an example of the questions that are the subject of
statistics.

14.1 Variability and small samples

Perhaps the most important idea for sound statistical inference — the section of the book
we are now beginning, in contrast to problems in probability, which we have studied in the
previous chapters — is recognition of the presence of variability in the results of small samples.
The fatal error of relying on too-small samples is all too common among economic forecasters,
journalists, and others who deal with trends and public opinion. Athletes, sports coaches,
sportswriters, and fans too frequently disregard this principle both in their decisions and in
their discussion.

Our intuitions often carry us far astray when the results vary from situation to situation —
that is, when there is variability in outcomes — and when we have only a small sample of
outcomes to look at.

To motivate the discussion, I’ll tell you something that almost no American sports fan will
believe: There is no such thing as a slump in baseball batting. That is, a batter often goes an
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alarming number of at-bats without getting a hit, and everyone — the manager, the sportswrit-
ers, and the batter himself — assumes that something has changed, and the probability of the
batter getting a hit is now lower than it was before the slump. It is common for the manager
to replace the player for a while, and for the player and coaches to change the player’s hitting
style so as to remedy the defect. But the chance of a given batter getting a hit is just the
same after he has gone many at-bats without a hit as when he has been hitting well. A belief
in slumps causes managers to play line-ups which may not be their best.

By “slump” I mean that a player’s probability of getting a hit in a given at-bat is lower during
a period than during average periods. And when I say there is no such thing as a slump,
I mean that the chances of getting a hit after any sequence of at-bats without a hit is not
different than the long-run average.

The “hot hand” in basketball is another illusion. In practical terms, the hot hand does not
exist — or rather — if it does, the effect is weak.1 The chance of a shooter scoring is more
or less the same after they have just missed a flock of shots as when they have just sunk a
long string. That is, the chance of scoring a basket is not appreciably higher after a run of
successes than after a run of failures. But even professional teams choose plays on the basis
of who supposedly has a hot hand.

Managers who substitute for the “slumping” or “cold-handed” players with other players who,
in the long run, have lower batting averages, or set up plays for the shooter who supposedly has
a hot hand, make a mistake. The supposed hot hand in basketball, and the slump in baseball,
are illusions because the observed long runs of outs, or of baskets, are statistical artifacts, due
to ordinary random variability. The identification of slumps and hot hands is superstitious
behavior, classic cases of the assignment of pattern to a series of events when there really is
no pattern.

How do statisticians ascertain that slumps and hot hands are very weak effects, or do not exist?
In brief, in baseball we simulate a hitter with a given average — say .250 — and compare the
results with actual hitters of that average, to see whether they have “slumps” longer than the
computer. The method of investigation is roughly as follows. You program a computer or
other machine to behave the way a player would, given the player’s long-run average, on the
assumption that each trial is a random drawing. For example, if a player has a .250 season-long
batting average, the machine is programmed like a bucket containing three black balls and one
white ball. Then for each simulated at bat, the machine shuffles the “balls” and draws one; it
then records whether the result is black or white, after which the ball is replaced in the bucket.
To study a season with four hundred at-bats, a simulated ball is drawn four hundred times.

The records of the player’s real season and the simulated season are then compared. If there
really is such a thing as a non-random slump or streak, there will be fewer but longer “runs” of
hits or outs in the real record than in the simulated record. On the other hand, if performance

1We are simplifying here; the Hot-Hand is a controversial topic, and it has its own Wikipedia page with
information and discussion: https://en.wikipedia.org/wiki/Hot_hand. It may be overstating to say the
effect does not exist, but if it does exist, the effect is much smaller than most sports fans believe it to be.
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is independent from at-bat trial to at-bat trial, the actual record will change from hit to out
and from out to hit as often as does the random simulated record. I suggested this sort of
test for the existence of slumps in my 1969 book that first set forth the resampling method, a
predecessor of this book.

For example, Table 14.1 shows the results of one 400 at-bat season for a simulated .250 hitter.
(H = hit, O = out, sequential at-bats ordered vertically) Note the “slump” — 1 for 24 — in
columns 7 & 8 (in bold).

Table 14.1: 400 simulated at-bats (ordered vertically)

O O O O O O H O O O O H O H O O
O O O O O H O O H H H O H H O O
O O O H O O O O H O O O H H O O
O O O O O H H O O O O H O O O H
H O H O O H O O O H O O O O H O
H O O H O O H H O H O O H O H O
O O H O O O O H O O O O O O H O
O O H O O O O H H O O O O O O O
O H O O O O O O H H O O O H O O
O H H O O O O H O H O O H O H O
O O H H O H O H O H H H O O O O
H O O O O O O O O H O H H O O O
O H O O O H O O O O O O O O H H
H O H O O O H O O O O H H O O H
O O O O H H O O O O O H H H H O
O O O O H H O O O O O H O O O O
H O O O O O O O O O O O O O O O
O H H H O O O H O H O O O O O O
O H O H O O O O H O O O O H O O
O O O H H O O O O O H O H O O H
O H O O H O O O O O H O O O O O
H H H O O O O H O O O O H O O H
O O O H H O O O O O O O O O H O
O H O O O O O H H O O O O O O H
O O O O O H O O O H O H O H O O

Harry Roberts investigated the batting records of a sample of major leaguers.2 He compared
players’ season-long records against the behavior of random-number drawings. If slumps ex-
isted rather than being a fiction of the imagination, the real players’ records would shift from

2See Simon’s description of these experiments in Batter’s slump and other illusions, Washington Post, August
9th, 1987.
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a string of hits to a string of outs less frequently than would the random-number sequences.
But in fact the number of shifts, and the average lengths of strings of hits and outs, are on
average the same for players as for player-simulating random-number devices.

Over long periods, averages may vary systematically, as Ty Cobb’s annual batting averages
varied non-randomly from season to season, Roberts found. But in the short run, most indi-
vidual and team performances have shown results similar to the outcomes that a lottery-type
random number machine would produce.

Thomas Gilovich, Robert Vallone and Amos Twersky (1985) performed a similar study of
basketball shooting. They examined the records of shots from the floor by the Philadelphia
76’ers, foul shots by the Boston Celtics, and a shooting experiment of Cornell University teams.
They found that “basketball players and fans alike tend to believe that a player’s chance of
hitting a shot are greater following a hit than following a miss on the previous shot. However,
detailed analyses…provided no evidence for a positive correlation between the outcomes of
successive shots.”

To put their conclusion differently, knowing whether a shooter has scored or not scored on the
previous shot — or in any previous sequence of shots — is of absolutely no use in predicting
whether the shooter will or will not score on the next shot. Similarly, knowledge of the past
series of at-bats in baseball does not improve a prediction of whether a batter will get a hit
this time.

Of course a batter feels — and intensely — as if she or he has a better chance of getting a hit
at some times than at other times. After a series of successful at-bats, both sandlot players
and professionals feel confident that this time will be a hit, too. And after you have hit a
bunch of baskets from all over the court, you feel as if you can’t miss.

But notice that card players get the same poignant feeling of being “hot” or “cold,” too. After
a poker player “fills” several straights and flushes in a row, s/he feels s/he will hit the next one
too. (Of course there are some players who feel just the opposite, that the “law of averages”
is about to catch up with them.)

You will agree, I’m sure, that the cards don’t have any memory, and a player’s chance of filling
a straight or flush remains the same no matter how he or she has done in the last series of
hands. Clearly, then, a person can have a strong feeling that something is about to happen
even when that feeling has no foundation. This supports the idea that even though a player
in sports “feels” that s/he is in a slump or has a hot hand, this does not imply that the feeling
has any basis in reality.

Why, when a batter is low in his/her mind because s/he has been making a lot of outs or
for personal reasons, does her/ his batting not suffer? And why the opposite? Apparently
at any given moment there are many influences operating upon a player’s performance in a
variety of directions, with none of them clearly dominant. Hence there is no simple convincing
explanation why a player gets a hit or an out, a basket or a miss, on any given attempt.

280



But though science cannot provide an explanation, the sports commentators always are ready
to offer their analyses. Listen, for example, to how they tell you that Joe Zilch must have been
trying extra hard just because of his slump. There is a sportswriter’s explanation for anything
that happens.

Why do we believe the nonsense we hear about “momentum,” “comeback,” “she’s due this
time,” and so on? The adult of the human species has a powerful propensity to believe that
he or she can find a pattern even when there is no pattern to be found. Two decades ago I
cooked up series of numbers with a random-number machine that looked as if they were prices
on the stock market. Subjects in the experiment were told to buy and sell whichever stocks
they chose. Then I gave them “another day’s prices,” and asked them to buy and sell again.
The subjects did all kinds of fancy figuring, using an incredible variety of assumptions — even
though there was no way for the figuring to help them. That is, people sought patterns even
though there was no reason to believe that there were any patterns to be found.

When I stopped the game before the ten buy-and-sell sessions the participants expected, people
asked that the game continue. Then I would tell them that there was no basis for any patterns
in the data. “Winning” or “losing” had no meaning. But the subjects demanded to continue
anyway. They continued believing that they could find patterns even after I told them that
the numbers were randomly looked up and not real stock prices.

The illusions in our thinking about sports have important counterparts in our thinking about
such real-world phenomena as the climate, the stock market, and trends in the prices of raw
materials such as mercury, copper and wheat. And private and public decisions made on the
basis of faulty understanding of these real situations, caused by illusory thinking on the order
of belief in slumps and hot hands, are often costly and sometimes disastrous.

An example of the belief that there are patterns when there are none: Systems for finding
patterns in the stock market are peddled that have about the same reliability as advice from
a racetrack tout — and millions buy them.

One of the scientific strands leading into research on variability was the body of studies that
considers the behavior of stock prices as a “random walk.” That body of work asserts that a
stock broker or chartist who claims to be able to find patterns in past price movements of stocks
that will predict future movements should be listened to with about the same credulity as a
racetrack tout or an astrologer. A second strand was the work in psychology in the last decade
or two which has recognized that people’s estimates of uncertain events are systematically
biased in a variety of interesting and knowable ways.

The U.S. government has made — and continues to make — blunders costing the public
scores of billions of dollars, using slump-type fallacious reasoning about resources and energy.
Forecasts are issued and policies are adopted based on the belief that a short-term increase in
price constitutes a long-term trend. But the “experts” employed by the government to make
such forecasts do no better on average than do private forecasters, and often the system of
forecasting that they use is much more misleading than would be a random-number generating
machine of the sort used in the baseball slump experiments.

281



Please look at the data in Figure 14.1 for the height of the Nile River over about half a century.
Is it not natural to think that those data show a decline in the height of the river? One can
imagine that if our modern communication technology existed then, the Cairo newspapers
would have been calling for research to be done on the fall of the Nile, and the television
anchors would have been warning the people to change their ways and use less water.
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Figure 14.1: Height of the Nile River Over Half of a Century

Let’s look at Figure 14.2 which represents the data over an even longer period. What now
would you say about the height of the Nile? Clearly the “threat” was non-existent, and only
appeared threatening because the time span represented by the data was too short. The point
of this display is that looking at too-short a segment of experience frequently leads us into
error. And “too short” may be as long as a century.

Another example is the price of mercury, which is representative of all metals. Figure 14.3
shows a forecast made in 1976 by natural-scientist Earl Cook (1976). He combined a then-
recent upturn in prices with the notion that there is a finite amount of mercury on the earth’s
surface, plus the mathematical charm of plotting a second-degree polynomial with the com-
puter. Figure 14.4 and Figure 14.5 show how the forecast was almost immediately falsified,
and the price continued its long-run decline.

Lack of sound statistical intuition about variability can lead to manipulation of the public
being by unscrupulous persons. Commodity funds sellers use a device of this sort to make their
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Figure 14.2: Variations in the height of Nile Flood in centimeters. The sloping line indicates
the secular raising of the bed of the Nile by deposition of silt. From Brooks (1928)

Figure 14.3: The Price of Mercury from Cook (1976)
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Figure 14.4: Mercury Reserves, 1950-1990
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results look good (The Washington Post, Sep 28, 1987, p. 71). Some individual commodity
traders inevitably do well in their private trading, just by chance. A firm then hires one of
them, builds a public fund around him, and claims the private record for the fund’s own history.
But of course the private record has no predictive power, any more than does the record of
someone who happened to get ten heads in a row flipping coins.

How can we avoid falling into such traps? It is best to look at the longest possible sweep of
history. That is, use the largest possible sample of observations to avoid sampling error. For
copper we have data going back to the 18th century B.C. In Babylonia, over a period of 1000
years, the price of iron fell to one fifth of what it was under Hammurabi (almost 4000 years
ago), and the price of copper then cost about a thousand times its current price in the U.S.,
relative to wages. So the inevitable short-run increases in price should be considered in this
long-run context to avoid drawing unsound conclusions due to small-sample variability.

Proof that it is sound judgment to rely on the longest possible series is given by the accuracy
of predictions one would have made in the past. In the context of copper, mercury, and other
raw materials, we can refer to a sample of years in the past, and from those years imagine
ourselves forecasting the following year. If you had bet every time that prices would go down
in consonance with the long-run trend, you would have been a big winner on average.

14.2 Regression to the mean

UP, DOWN “The Dodgers demoted last year’s NL rookie of the year, OF Todd
Hollandsworth (.237, 1 HR, 18 RBI) to AAA Albuquerque...” (Item in Washington
Post , 6/14/97)

It is a well-known fact that the Rookie of the Year in a sport such as baseball seldom has as
outstanding a season in their sophomore year. Why is this so? Let’s use the knowledge we
have acquired of probability and simulation to explain this phenomenon.

The matter at hand might be thought of as a problem in pure probability — if one simply
asks about the chance that a given player (the Rookie of the Year) will repeat. Or it could be
considered a problem in statistics, as discussed in coming chapters. Let’s consider the matter
in the context of baseball.

Imagine 10 mechanical “ball players,” each a machine that has three white balls (hits) and 7
black balls. Every time the machine goes to bat, you take a ball out of the machine, look to
see if it is a hit or an out, and put it back. For each “ball player” you do this 100 times. One
of them is going to do better than the others, and that one becomes the Rookie of the Year.
See Table 14.2.
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Table 14.2: Rookie Seasons (100 at bats)

# of Hits Batting Average
32 .320
34 .340
33 .330
30 .300
35 .350
33 .330
30 .300
31 .310
28 .280
25 .250

Would you now expect that the player who happened to be the best among the top ten in the
first year to again be the best among the top ten in the next year, also? The sports writers do.
But of course this seldom happens. The Rookie of the Year in major-league baseball seldom
has as outstanding a season in their sophomore year as in their rookie year. You can expect
them to do better than the average of all sophomores, but not necessarily better than all of
the rest of the group of talented players who are now sophomores. (Please notice that we are
not saying that there is no long-run difference among the top ten rookies. But suppose there
is. Table 14.3 shows the season’s performance for ten batters of differing performances).

Table 14.3: Simulated season’s performance for 10 batters of differing “true” averages

“True” Rookie
.270 .340
.270 .240
.280 .330
.280 .300
.300 .280
.300 .420
.320 .340
.320 .350
.330 .260
.330 .330

We see from Table 14.3 that we have ten batters whose “true” batting averages range from
.270 to .330. Their rookie year performance (400 at bats), simulated on the basis of their
“true”average is on the right. Which one is the rookie of the year? It’s #6, who hit .420
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during the rookie session. Will they do as well next year? Not likely — their “true” average
is only .300.

Note 35: Notebook: Experiment in sampling variability

• Download notebook
• Interact

Try generating some rookie “seasons” yourself with the following commands, ranging the bat-
ter’s “true” performance by changing the value of p_hit (the probability of a hit).

import numpy as np

rnd = np.random.default_rng()

# Simulate a rookie season of 400 at-bats.

# You might try changing the value below and rerunning.
# This is the true (long-run) probability of a hit for this batter.
p_hit = 0.4
print('True average is:', p_hit)

True average is: 0.4

at_bats = rnd.choice(['Hit', 'Out'], p=[p_hit, 1 - p_hit], size=400)
simulated_average = np.sum(at_bats == 'Hit') / 400
# Show the result
print('Simulated average is:', simulated_average)

Simulated average is: 0.4075

Simulate a set of 10 or 20 such rookie seasons, and look at the one who did best. How did
their rookie season compare to their “true” average?

End of notebook: Experiment in sampling variability

sampling_variability starts at Note 35.

The explanation is the presence of variability. And lack of recognition of the role of variability
is at the heart of much fallacious reasoning. Being alert to the role of variability is crucial.
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Or consider the example of having a superb meal at a restaurant — the best meal you have
ever eaten. That fantastic meal is almost surely the combination of the restaurant being
better than average, plus a lucky night for the chef and the dish you ordered. The next time
you return you can expect a meal better than average, because the restaurant is better than
average in the long run. But the meal probably will be less good than the superb one you had
the first time, because there is no reason to believe that the chef will get so lucky again and
that the same sort of variability will happen this time.

These examples illustrate the concept of “regression to the mean” — a confusingly-titled and
very subtle effect caused by variability in results among successive samples drawn from the
same population. This phenomenon was given its title more than a century ago by Francis
Galton, one of the great founders of modern statistics, when at first he thought that the height
of the human species was becoming more uniform, after he noticed that the children of the
tallest and shortest parents usually are closer to the average of all people than their parents
are. But later he discovered his fallacy — that the variability in heights of children of quite
short and quite tall parents also causes some people to be even more exceptionally tall or
short than their parents. So the spread in heights among humans remains much the same
from generation to generation; there is no “regression to the mean.” The heart of the matter
is that any exceptional observed case in a group is likely to be the result of two forces — a)
an underlying propensity to differ from the average in one direction or the other, plus b) some
chance sampling variability that happens (in the observed case) to push even further in the
exceptional direction.

A similar phenomenon arises in direct-mail marketing. When a firm tests many small samples
of many lists of names and then focuses its mass mailings on the lists that performed best in
the tests, the full list “rollouts” usually do not perform as well as the samples did in the initial
tests. It took many years before mail-order experts (see especially (Burnett 1988)) finally
understood that regression to the mean inevitably causes an important part of the dropoff
from sample to rollout observed in the set of lists that give the very best results in a multi-list
test.

The larger the test samples, the less the dropoff, of course, because larger samples reduce
variability in results. But larger samples risk more money. So the test-sample-size decision for
the marketer inevitably is a trade-off between accuracy and cost.

And one last amusing example: After I (JLS) lectured to the class on this material, the student
who had gotten the best grade on the first mid-term exam came up after class and said: “Does
that mean that on the second mid-term I should expect to do well but not the best in the
class?” And that’s exactly what happened: He had the second-best score in the class on the
next midterm.

A related problem arises when one conducts multiple tests, as when testing thousands of drugs
for therapeutic value. Some of the drugs may appear to have a therapeutic effect just by
chance. We will discuss this problem later when discussing hypothesis testing.
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14.3 Summary and conclusion

The heart of statistics is clear thinking. One of the key elements in being a clear thinker is to
have a sound gut understanding of statistical processes and variability. This chapter amplifies
this point.

A great benefit to using simulations rather than formulas to deal with problems in probability
and statistics is that the presence and importance of variability becomes manifest in the course
of the simulation work.
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15 The Procedures of Monte Carlo Simulation
(and Resampling)

Until now, the steps to follow in solving particular problems have been chosen to fit the specific
facts of that problem. And so they always must. Now let’s generalize what we have done in
the previous chapters on probability into a general procedure for such problems, which will
in turn become the basis for a detailed procedure for resampling simulation in statistics. The
generalized procedure describes what we are doing when we estimate a probability using Monte
Carlo simulation problem-solving operations.

15.1 A definition and general procedure for Monte Carlo simulation

This is what we shall mean by the term Monte Carlo simulation when discussing problems in
probability: Using the given data-generating mechanism (such as a coin or die) that is a model
of the process you wish to understand, produce new samples of simulated data, and examine
the results of those samples. That’s it in a nutshell. In some cases, it may also be appropriate
to amplify this procedure with additional assumptions.

This definition fits both problems in pure probability as well as problems in statistics, but in
the latter case the process is called resampling. The reason that the same definition fits is
that at the core of every problem in inferential statistics lies a problem in probability ; that is,
the procedure for handling every statistics problem is the procedure for handling a problem in
probability. (There is related discussion of definitions in Chapter 8 and Chapter 20.)

The following series of steps should apply to all problems in probability. I’ll first state the
procedure straight through without examples, and then show how it applies to individual
examples.

• Step A Construct a simulation “universe” of cards or dice or some other randomizing
mechanism whose composition is similar to the universe whose behavior we wish to
describe and investigate. The term “universe” refers to the system that is relevant for a
single simple event.

• Step B Specify the procedure that produces a pseudo-sample which simulates the real-
life sample in which we are interested. That is, specify the procedural rules by which
the sample is drawn from the simulated universe. These rules must correspond to the
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behavior of the real universe in which you are interested. To put it another way, the sim-
ulation procedure must produce simple experimental events with the same probabilities
that the simple events have in the real world.

• Step C Describe any composite events. If several simple events must be combined into
a composite event, and if the composite event was not described in the procedure in step
B, describe it now.

• Step D. Calculate the probability of interest from the tabulation of outcomes of the
resampling trials.

Now let us apply the general procedure to some examples to make it more concrete.

Here are four problems to be used as illustrations:

1. Three percent gizmos — if on average 3 percent of the gizmos sent out are defective,
what is the chance that there will be more than 10 defectives in a shipment of 200?

2. Three girls, 106 in 206 — what are the chances of getting three or more girls in the
first four children, if the probability of a female birth is 106/206?

3. Less than 20 baskets — what are the chances of Joe Hothand scoring 20 or fewer
baskets in 57 shots if his long-run average is 47 percent?

4. Same birthday in 25 — what is the probability of two or more people in a group of 25
persons having the same birthday — i. e., the same month and same day of the month?

15.2 Apply step A — construct a simulation universe

As a reminder:

• Step A Construct a simulation “universe” of cards or dice or some other randomizing
mechanism whose composition is similar to the universe whose behavior we wish to
describe and investigate. The term “universe” refers to the system that is relevant for a
single simple event.

For our example problems:

1. Three percent gizmos: A random drawing with replacement from the set of numbers 1
through 100 with 1 through 3 designated as defective, simulates the system that produces
3 defective gizmos among 100.

2. Three girls, 106 in 206: You could take two decks of cards, from which you take out
both Aces of spades, and replace these with a Joker. You now have 103 cards (206
/ 2), of which 53 (106 / 2) are red, counting the Joker as red. You could also use a
random drawing from two sets of numbers, one comprising 1 through 106 and the other
107 through 206. Either universe can simulate the system that produces a single male
or female birth, when we are estimating the probability of three girls in the first four
children. Notice that in this universe the probability of a girl remains the same from trial
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event to trial event — that is, the trials are independent — demonstrating a universe
from which we sample with replacement.

3. Less than 20 baskets: A random drawing with replacement from a bucket containing
a hundred balls, 47 red and 53 black, simulates the system that produces 47 percent
baskets for Joe Hothand.

4. Same birthday in 25: A random drawing with replacement from the numbers 1 through
365 simulates the system that produces a birthday.

This step A includes two operations:

1. Decide which symbols will stand for the elements of the universe you will simulate.
2. Determine whether the sampling will be with or without replacement. (This can be

ambiguous in a complex modeling situation.)

Hard thinking is required in order to determine the appropriate “real” universe whose proper-
ties interest you.

15.3 Apply step B — specify the procedure

• Step B Specify the procedure that produces a pseudo-sample which simulates the real-
life sample in which we are interested. That is, specify the procedural rules by which
the sample is drawn from the simulated universe. These rules must correspond to the
behavior of the real universe in which you are interested. To put it another way, the sim-
ulation procedure must produce simple experimental events with the same probabilities
that the simple events have in the real world.

For example:

1. Three percent gizmos: For a single gizmo, you can draw a single number from an infinite
universe. Or one can use a finite set with replacement and shuffling.

2. Three girls, 106 in 206: In the case of three or more daughters among four children, you
could use the deck of 103 cards, from Step A, of which 53 count as red. To simulate
one child, you can draw a card and then replace it, noting female for a red card or a
Joker. Or if you are using random numbers from the computer, the random numbers
automatically simulate replacement. Just as the chances of having a boy or a girl do
not change depending on the sex of the preceding child, so we want to ensure through
sampling with replacement that the chances do not change each time we choose from the
deck of cards.

3. Less than 20 baskets: In the case of Joe Hothand’s shooting, the procedure is to consider
the numbers 1 through 47 as “baskets,” and 48 through 100 as “misses,” with the same
other considerations as the gizmos.
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4. Same birthday in 25. In the case of the birthday problem, the drawing must be with
replacement, because the fact that you have drawn — say — a 10 (10th day in year),
should not affect the chances of drawing 10 for a second person in the room.

Recording the outcome of the sampling must be indicated as part of this step, e.g., “record
‘yes’ if girl or basket, ‘no’ if a boy or a miss.”

15.4 Apply step C — describe any composite events

• Step C Describe any composite events. If several simple events must be combined into
a composite event, and if the composite event was not described in the procedure in step
B, describe it now.

For example:

1. Three percent gizmos: For the gizmos, draw a sample of 200.
2. Three girls, 106 in 206: For the three or more girls among four children, the procedure

for each simple event of a single birth was described in step B. Now we must specify
repeating the simple event four times, and counting whether the outcome is or is not
three girls.

3. Less than 20 baskets: In the case of Joe Hothand’s shots, we must draw 57 numbers to
make up a sample of shots, and examine whether there are 20 or more misses.

Recording the results as “ten or more defectives,” “three or more girls” or “two or less girls,”
and “20 or more misses” or “19 or fewer,” is part of this step. This record indicates the results
of all the trials and is the basis for a tabulation of the final result.

15.5 Apply step D — calculate the probability

• Step D. Calculate the probability of interest from the tabulation of outcomes of the
resampling trials.

For example: the proportions of “yes” and “no,” and “20 or more” and “19 or fewer” estimate
the probability we seek in step C.

The above procedure is similar to the procedure followed with the analytic formulaic method
except that the latter method constructs notation and manipulates it.
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15.6 Summary

This chapter gives a more general description of the specific steps used in prior chapters to
solve problems in probability.
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16 Ranks, Quantiles and Standard Scores

Imagine we have a set of measures, in some particular units. We may want some way to see
quickly how these measures compare to one another, and how they may compare to other
measures, in different units.

Ranks are one way of having an implicit comparison between values.1 Is the value large in
terms of the other values (with high rank) — or is it small (low rank)?

We can convert ranks to quantile positions. Quantile positions are values from 0 through 1
that are closer to 1 for high rank values, and closer to 0 for low rank values. The smallest value
(and the value with the lowest rank) will have quantile position 0, the largest value (highest
rank) will have quantile position 1. Each value in the data has a rank, and a corresponding
quantile position. We can also look at the value corresponding to each quantile position, and
these are the quantile values, usually called simply — quantiles. You will see what we mean
later in the chapter.

Ranks and quantile positions give an idea whether the measure is high or low compared to
the other values, but they do not immediately tell us whether the measure is exceptional or
unusual. To do that, we may want to ask whether the measure falls outside the typical range
of values — that is, how the measure compares to the distribution of values. One common
way of doing this is to re-express the measures (values) as standard scores, where the standard
score for a particular value tells you how far the value is from the center of the distribution,
in terms of the typical spread of the distribution. (We will say more about what we mean by
“typical” later.) Standard values are particularly useful to allow us to compare different types
of measures on a standard scale. They translate the units of measurement into standard and
comparable units.

16.1 Household income and congressional districts

Democratic congresswoman Marcy Kaptur has represented the 9th district of Ohio since 1983.
Ohio’s 9th district is relatively working class, and the Democratic party has, traditionally,
represented people with lower income. However, Kaptur has pointed out that this pattern

1To get ranks we have to be able to sort our values in some reasonable way from low to high. This usually makes
sense for measured data, where the measurement gives a number in the same unit for each observation, but
may not make sense for other data, such as names or labels. For example, it may or may not be meaningful
to rank names alphabetically. As usual, this is a matter of judgment.
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appears to be changing; more of the high-income congressional districts now lean Democrat,
and the Republican party is now more likely to represent lower-income districts. The French
economist Thomas Piketty has described this phenomenon across several Western countries.
Voters for left parties are now more likely to be highly educated and wealthy. He terms this shift
“Brahmin Left Vs Merchant Right” (Piketty 2018). The data below come from a table Kaptur
prepared that shows this pattern in the 2023 US congress. The table lists the top 20 districts
by the median income of the households in that district, along with their representatives and
their party.2

Table 16.1: 20 most wealthy 2023 Congressional districts by household income

Ascending_Rank District Median Income Representative Party
422 422 MD-3 114804 J. Sarbanes Democrat
423 423 MA-5 115618 K. Clark Democrat
424 424 NY-12 116070 J. Nadler Democrat
425 425 VA-8 116332 D. Beyer Democrat
426 426 MD-5 117049 S. Hoyer Democrat
427 427 NJ-11 117198 M. Sherrill Democrat
428 428 NY-3 119185 G. Santos Republican
429 429 CA-14 119209 E. Swalwell Democrat
430 430 NJ-7 119567 T. Kean Republican
431 431 NY-1 120031 N. LaLota Republican
432 432 WA-1 120671 S. DelBene Democrat
433 433 MD-8 120948 J. Raskin Democrat
434 434 NY-4 121979 A. D’Esposito Republican
435 435 CA-11 124456 N. Pelosi Democrat
436 436 CA-15 125855 K. Mullin Democrat
437 437 CA-10 135150 M. DeSaulnier Democrat
438 438 VA-11 139003 G. Connolly Democrat
439 439 VA-10 140815 J. Wexton Democrat
440 440 CA-16 150720 A. Eshoo Democrat
441 441 CA-17 157049 R. Khanna Democrat

You may notice right away that many of the 20 richest districts have Democratic Party repre-
sentatives.

In fact, if we look at all 441 congressional districts in Kaptur’s table, we find a large difference
in the average median household income for Democrat and Republican districts; the Democrat
districts are, on average, about 14% richer (Table 16.2).

2For now, let us define the median value 𝑀 as the value such that (as close as possible to) half of the households
in the district have a lower income than 𝑀, and (as close as possible to) half have a higher income. We will
give more detail on the median later in the chapter.
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Table 16.2: Means for median household income by party

Mean of median household income
Democrat $76,933
Republican $67,474

Next we are going to tip our hand, and show how we got these data. In previous chapters, we
had cells like this in which we enter the values we will analyze. These values come from the
example we introduced in Section 12.15:

# Liquor prices for US states with private market.
priv = np.array([

4.82, 5.29, 4.89, 4.95, 4.55, 4.90, 5.25, 5.30, 4.29, 4.85, 4.54, 4.75,
4.85, 4.85, 4.50, 4.75, 4.79, 4.85, 4.79, 4.95, 4.95, 4.75, 5.20, 5.10,
4.80, 4.29])

Now we have 441 values to enter, and it is time to introduce Python’s standard tools for
loading data.

16.1.1 Comma-separated-values (CSV) format

The data we will load is in a file on disk called data/congress_2023.csv. These are data
from Kaptur’s table in a comma-separated-values (CSV) format file. We refer to this file with
its filename, that starts with the directory (folder) containing the file — data/ — followed by
the name of the file (congress_2023.csv), giving a filename of data/congress_2023.csv.

The CSV format is a very simple text format for storing table data. Usually, the first line of
the CSV file contains the column names of the table, and the rest of the lines contain the row
values. As the name suggests, commas (,) separate the column names in the first line, and
the row values in the following lines. If you opened the data/congress_2023.csv file in some
editor, such as Notepad on Windows or TextEdit on Mac, you would find that the first few
lines looked like this:

Ascending_Rank,District,Median_Income,Representative,Party
1,PR-At Large,22237,J. González-Colón,Republican
2,AS-At Large,28352,A. Coleman,Republican
3,MP-At Large,31362,G. Sablan,Democrat
4,KY-5,37910,H. Rogers,Republican
5,MS-2,37933,B. G. Thompson,Democrat

In the code that follows, we will read the values from the CSV file directly into Python.
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Note 36: Download links with data files

Up till now, the Download links for notebook files point to a single file — the notebook.
The Jupyter notebook file has extension .ipynb .
From now on, some examples involve reading a data file. In order to run the notebook,
you need the notebook file (with extension.ipynb) as well as the data file. For those
cases, the download link points to a .zip file containing the notebook file and the data
file. To run the example on your computer, download the .zip file, extract the contents,
and then open the notebook file using Jupyter.

16.1.2 Introducing the Pandas library

Note 37: Notebook: Starting with Pandas

• Download zip with notebook + data file
• Interact

Here we use the Pandas library to load table data into Python.

Thus far we have used the Numpy library to work with data in arrays. As always with Python,
when we want to use a library — like Numpy, or Pandas — we have to import it first.

We have used the term library here, but Python uses the term module to refer to libraries of
code and data that you import. We will use the terms “library” and “module” to mean the
same thing — a Python module.

When using Numpy, we write:

# Import the Numpy library (module), name it "np".
import numpy as np

Now we will use the Pandas library (module).

We can import Pandas like this:

# Import the Pandas library (module)
import pandas

As Numpy has a standard abbreviation np, that almost everyone writing Python code will
recognize and use, so Pandas has the standard abbreviation pd:
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# Import the Pandas library (module), name it "pd".
import pandas as pd

Pandas is the standard data science library for Python. It is particularly good at loading data
files, and presenting them to us as a useful table-like structure, called a data frame.

We start by using Pandas to load our data file:

district_income = pd.read_csv('data/congress_2023.csv')

We have thus far done many operations that returned Numpy arrays. pd.read_csv returns a
Pandas data frame:

type(district_income)

<class 'pandas.core.frame.DataFrame'>

A data frame is Pandas’ own way of representing a table, with columns and rows. You can
think of it as Python’s version of a spreadsheet. As strings or Numpy arrays have methods
(functions attached to the array), so Pandas data frames have methods. These methods do
things with the data frame to which they are attached. For example, the head method of the
data frame gives us (by default) the first five rows in the table:

# Show the first five rows in the data frame
district_income.head()

Ascending_Rank District Median_Income Representative Party
0 1 PR-At Large 22237 J. González-Colón Republican
1 2 AS-At Large 28352 A. Coleman Republican
2 3 MP-At Large 31362 G. Sablan Democrat
3 4 KY-5 37910 H. Rogers Republican
4 5 MS-2 37933 B. G. Thompson Democrat

The data are in income order, from lowest to highest, so the first five districts are those with
the lowest household income.

We are particularly interested in the column named Median_Income.

You may remember the idea of indexing, introduced in Section 6.6. Indexing occurs when we
fetch data from within a container, such as a string or an array. We do this by putting square
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brackets [] after the value we want to index into, and put something inside the brackets to
say what we want.

For example, to get the first element of the priv array above, we use indexing:

# Fetch the first element of the priv array with indexing.
# This is the element at position 0.
priv[0]

np.float64(4.82)

As you can index into strings and Numpy arrays, by using square brackets, so you can index
into Pandas data frames. Instead of putting the position between the square brackets, we can
put the column name. This fetches the data from that column, returning a new type of value
called a Pandas Series.

# Index into Pandas data frame to get one column of data.
# Notice we use a string between the square brackets, giving the column name.
income_col = district_income['Median_Income']
# The value that comes back is of type Series. A Series represents the
# data from a single column.
type(income_col)

<class 'pandas.core.series.Series'>

We want to go straight to our familiar Numpy arrays, so we convert the column of data into
a Numpy array, using the np.array function you have already seen:

# Convert column data into a Numpy array.
incomes = np.array(income_col)
# Show the first five values, by indexing with a slice.
incomes[:5]

array([22237, 28352, 31362, 37910, 37933])

End of notebook: Starting with Pandas

starting_pandas starts at Note 37.
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16.1.3 Incomes and Ranks

We now have the incomes values as an array.

There are 441 values in the whole vector, one of each congressional district:

len(incomes)

441

While we are at it, let us also get the values from the Ascending_Rank column, with the same
procedure. These are ranks from low to high, meaning 1 is the lowest median income, and 441
is the highest median income.

lo_to_hi_ranks = np.array(district_income['Ascending_Rank'])
# Show the first five values, by indexing with a slice.
lo_to_hi_ranks[:5]

array([1, 2, 3, 4, 5])

In our case, the DataFrame has the Ascending_Rank column with the ranks we need, but if we
need the ranks and we don’t have them, we can calculate them using the rankdata function
from the Scipy stats package.

16.1.4 Introducing Scipy

Earlier in this chapter we introduced the Pandas module. We used Pandas to load the CSV
data into Python.

Now we introduce another fundamental Python library for working with data called Scipy.
The name Scipy comes from the compression of SCIentific PYthon, and the library is nearly
as broad as the name suggests — it is a huge collection of functions and data that implement
a wide range of scientific algorithms. Scipy is an umbrella package, in that it contains sub-
packages, each covering a particular field of scientific computing. One of those sub-packages
is called stats, and, yes, it covers statistics.

We can get the Scipy stats sub-package with:

import scipy.stats

but, as for Numpy and Pandas, we often import the package with an abbreviation, such as:
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# Import the scipy.stats package with the name "sps".
import scipy.stats as sps

One of the many functions in scipy.stats is the rankdata function.

16.1.5 Calculating ranks

As you might expect, sps.rankdata accepts an array as an input argument. Let’s say that
there are n = len(data) values in the array that we pass to sps.rankdata. The function
returns an array, length 𝑛, where the elements are the ranks of each corresponding element
in the input data array. A rank value of 1 corresponds the lowest value in data (closest
to negative infinity), and a rank of 𝑛 corresponds to the highest value (closest to positive
infinity).

Here’s an example data array to show how sps.rankdata works.

# The data.
data = np.array([3, -1, 5, -2])
# Corresponding ranks for the data.
sps.rankdata(data)

array([3., 2., 4., 1.])

We can use sps.rankdata to recalculate the ranks for the congressional median household
income values.

# Recalculate the ranks.
recalculated_ranks = sps.rankdata(incomes)
# Show the first 5 ranks.
recalculated_ranks[:5]

array([1., 2., 3., 4., 5.])

16.2 Comparing two values in the district income data

Let us say that we have taken an interest in two particular members of Congress: the Speaker
of the House of Representatives, Republican Kevin McCarthy, and the progressive activist and
Democrat Alexandria Ocasio-Cortez. We will refer to both using their initials: KM for Kevin
Owen McCarthy and AOC for Alexandra Ocasio-Cortez.

302

https://en.wikipedia.org/wiki/Kevin_McCarthy
https://en.wikipedia.org/wiki/Alexandria_Ocasio-Cortez


By scrolling through the CSV file, or (in our case) using some simple Pandas code that we
won’t cover now, we find the rows corresponding to McCarthy (KM) and Ocasio-Cortez (AOC)
— Table 16.3.

Table 16.3: Rows for Kevin McCarthy and Alexandra Ocasio-Cortez

Ascending_Rank District Median Income Representative Party
81 NY-14 56129 A. Ocasio-Cortez Democrat

295 CA-20 77205 K. McCarthy Republican

The rows show the rank of each congressional district in terms of median household income.
The districts are ordered by this rank, so we can get their respective indices (positions) in the
incomes array from their rank. Remember, Python’s indices start at 0, whereas the ranks
start at 1, so we need to subtract 1 from the rank to get the index

# Rank of McCarthy's district in terms of median household income.
km_rank = 295
# Index (position) of McCarthy's value in the "incomes" array.
# Subtract one from rank, because Python starts indices at 0 rather than 1.
km_index = km_rank - 1

Now we have the index (position) of KM’s value, we can find the household income for his
district from the incomes array:

# Show the median household income from McCarthy's district
# by indexing into the "incomes" array:
km_income = incomes[km_index]
km_income

np.int64(77205)

Here is the corresponding index and incomes value for AOC:

# Index (position) of AOC's value in the "incomes" array.
aoc_rank = 81
aoc_index = aoc_rank - 1
# Show the median household income from AOC's district
# by indexing into the "incomes" array:
aoc_income = incomes[aoc_index]
aoc_income
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np.int64(56129)

Notice that we fetch the same value for median household income from incomes as you see in
the corresponding rows.

16.3 Comparing values with ranks and quantile positions

We have KM’s and AOC’s district median household income values, but our next question
might be — how unusual are these values?

Of course, it depends what we mean by unusual. We might mean, are they greater or smaller
than most of the other values?

One way of answering that question is simply looking at the rank of the values. If the rank is
lower than 441

2 = 220.5 then this is a district with lower income than most districts. If it is
greater than 220.5 then it has higher income than most districts. We see that KM’s district,
with rank r get_var('km_rank'), is wealthier than most, whereas AOC’s district (rank r
get_var('aoc_rank')) is poorer than most.

But we can’t interpret the ranks without remembering that there are 441 values, so — for
example - a rank of 81 represents a relatively low value, whereas one of 295 is relatively
high.

We would like some scale that tells us immediately whether this is a relatively low or a relatively
high value, without having to remembering how many values there are.

This is a good use for quantile positions (QPs). The QP of a value tells you where the value
ranks relative to the other values, on a scale from 0 through 1. A QP of 0 tells you this is the
lowest-ranking value, and a QP of 1 tells you this is the highest-ranking value.

We can calculate the QP for each rank. Think of the low-to-high ranks as being a line starting
at 1 (the lowest rank — for the lowest median income) and going up to 441 (the highest rank
— for the highest median income).

The QP corresponding to any particular rank tells you how far along this line the rank is.
Notice that the length of the line is the distance from the first to the last value, so 441 - 1 =
440.

So, if the rank was 1, then the value is at the start of the line. It has got 0
440 of the way along

the line, and the QP is 0. If the rank is 441, the value is at the end of the line, it has got 440
440

of the way along the line and the QP is 1.
Now consider the rank of 100. It has got (100−1)

440 of the way along the line, and the QP position
is 0.22.

More generally, we can translate the high-to-low ranks to QPs with:
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# Length of the line defining quantile positions.
# Start of line is rank 1 (quantile position 0).
# End of line is rank 441 (quantile position 1).
distance = len(lo_to_hi_ranks) - 1 # 440 in our case.
# What proportion along the line does each value get to?
quantile_positions = (lo_to_hi_ranks - 1) / distance
# Show the first five.
quantile_positions[:5]

array([0. , 0.00227273, 0.00454545, 0.00681818, 0.00909091])

Let’s plot the ranks and the QPs together on the x-axis:
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The QPs for KM and AOC tell us where their districts’ incomes are in the ranks, on a 0 to 1
scale:

km_quantile_position = quantile_positions[km_index]
km_quantile_position

np.float64(0.6681818181818182)

aoc_quantile_position = quantile_positions[aoc_index]
aoc_quantile_position
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np.float64(0.18181818181818182)

If we multiply the QP by 100, we get the percentile positions — so the percentile position
ranges from 0 through 100.

# Percentile positions are just quantile positions * 100
print('KM percentile position:', km_quantile_position * 100)

KM percentile position: 66.81818181818183

print('AOC percentile position:', aoc_quantile_position * 100)

AOC percentile position: 18.181818181818183

Now consider one particular QP: 0.5. The 0.5 QP is exactly half-way along the line from rank
1 to rank 441. In our case this corresponds to rank 441−1

2 + 1 = 221.

# For rank 221 we need index 220, because Python indices start at 0
print('Middle rank:', lo_to_hi_ranks[220])

Middle rank: 221

print('Quantile position:', quantile_positions[220])

Quantile position: 0.5

The value corresponding to any particular QP is the quantile value, or just the quantile for
short. For a QP of 0.5, the quantile (quantile value) is:

# Quantile value for 0.5
print('Quantile value for QP of 0.5:', incomes[220])

Quantile value for QP of 0.5: 67407

In fact we can ask Python for this value (quantile) directly, using the quantile function:
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np.quantile(incomes, 0.5)

np.float64(67407.0)

quantile and sorting

In our case, the incomes data is already sorted from lowest (at position 0 in the array to
highest (at position 440 in the array). The quantile function does not need the data to
be sorted; it does its own internal sorting to do the calculation.
For example, we could shuffle incomes into a random order, and still get the same values
from quantile.

rnd = np.random.default_rng()
shuffled_incomes = rnd.permuted(incomes)
# Quantile still gives the same value.
np.quantile(incomes, 0.5)

np.float64(67407.0)

Above we have the 0.5 quantile — the value corresponding to the QP of 0.5.

The 0.5 quantile is an interesting value. By the definition of QP, exactly half of the remaining
values (after excluding the 0.5 quantile value) have lower rank, and are therefore less than
the 0.5 quantile value. Similarly exactly half of the remaining values are greater than the 0.5
quantile. You may recognize this as the median value. This is such a common quantile value
that NumPy has a function np.median as a shortcut for np.quantile(data, 0.5).

np.median(incomes)

np.float64(67407.0)

Another interesting QP is 0.25. We find the QP of 0.25 at rank:

qp25_rank = (441 - 1) * 0.25 + 1
qp25_rank

111.0
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# Therefore, index 110 (Python indices start from 0)
print('Rank corresponding to QP 0.25:', qp25_rank)

Rank corresponding to QP 0.25: 111.0

print('0.25 quantile value:', incomes[110])

0.25 quantile value: 58961

print('0.25 quantile value using np.quantile:',
np.quantile(incomes, 0.25))

0.25 quantile value using np.quantile: 58961.0
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0.25 quantile

Call the 0.25 quantile value 𝑉 . 𝑉 is the number such that 25% of the remaining values are
less than 𝑉 , and 75% are greater.

Now let’s think about the 0.01 quantile. We don’t have an income value exactly corresponding
to this QP, because there is no rank exactly corresponding to the 0.01 QP.

rank_for_qp001 = (441 - 1) * 0.01 + 1
rank_for_qp001

5.4
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Let’s have a look at the first 10 values for rank / QP and incomes:
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What then, is the quantile value for QP = 0.01? There are various ways to answer that
question (Hyndman and Fan 1996), but one obvious way, and the default for NumPy, is to
draw a straight line up from the matching rank — or equivalently, down from the QP — then
note where that line crosses the lines joining the values to the left and right of the QP on the
graph above, and look across to the y-axis for the corresponding value:
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0.01 quantile

np.quantile(incomes, 0.01)
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np.float64(38887.4)

This is called the linear method — because it uses straight lines joining the points to estimate
the quantile value for a QP that does not correspond to a whole-number rank.

Calculating quantiles using the linear method

We gave a graphical explanation of how to calculate the quantile for a QP that does not
correspond to whole-number rank in the data. A more formal way of getting the value
using the numerical equivalent of the graphical method is linear interpolation. Linear
interpolation calculates the quantile value as a weighted average of the quantile values
for the QPs of the whole number ranks just less than, and just greater than the QP
we are interested in. For example, let us return to the QP of 0.01. Here are the QPs,
whole-number ranks and corresponding values either side of the QP 0.01:

Table 16.4: Ranks, QPs and corresponding values around QP of 0.01

Rank Quantile position Quantile value
5 0.0099 37933
5.4 0.01 V
6 0.0113 40319

What value should we should give 𝑉 in the table? One answer is to take the average of
the two values either side of the desired QP — in this case (37933 + 40319)/2. We could
write this same calculation as 37933 ∗ 0.5 + 40319 ∗ 0.5 — showing that we are giving
equal weight (0.5) to the two values either side.
But giving both values equal weight doesn’t seem quite right, because the QP we want
is closer to the QP for rank 5 (and corresponding value 37933) than it is to the QP
for rank 6 (and corresponding value 40319). We should give more weight to the rank 5
value than the rank 6 value. Specifically the lower value is 0.4 rank units away from the
QP rank we want, and the higher is 0.6 rank units away. So we give higher weight for
shorter distance, and multiply the rank 5 value by 1 − 0.4 = 0.6, and the rank 6 value by
1 − 0.6 = 0.4. Therefore the weighted average is 37933 ∗ 0.6 + 40319 ∗ 0.4 = 38887.4. This
is a mathematical way to get the value we described graphically, of tracking up from the
rank of 5.4 to the line drawn between the values for rank 5 and 6, and reading off the
y-value at which this track crosses that line.

310

https://en.wikipedia.org/wiki/Linear_interpolation


16.4 Unusual values compared to the distribution

Now we return the problem of whether KMs and AOCs districts are unusual in terms of their
median household incomes. From what we have so far, we might conclude that AOC’s district
is fairly poor, and KM’s district is relatively wealthy. But — are either of their districts
unusual in their wealth or poverty?

To answer that question, we have to think about the distribution of values. Are either AOC’s
or KM’s district outside the typical spread of values for districts?

The rest of this section is an attempt to answer what we could mean by outside and typical
spread.

Let us start with a histogram of the district incomes, marking the position of the KM and
AOC districts.
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What could we mean by “outside” the “typical spread”. By outside, we mean somewhere away
from the center of the distribution. Let us take the mean of the distribution to be its center,
and add that to the plot.

mean_income = np.mean(incomes)
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16.5 On deviations

Now let us ask what we could mean by typical spread. By spread we mean deviation either
side of the center.

We can calculate how far away each income is away from the mean, by subtracting the mean
from all the income values. Call the result — the deviations from the mean, or deviations for
short.

deviations = incomes - np.mean(incomes)

The deviation values give, for each district, how far that district’s income is from the mean.
Values near the mean will have small (positive or negative) values, and values further from
the mean will have large (positive and negative) values. Here is a histogram of the deviation
values.
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Notice that the shape of the distribution has not changed — all that changed is the position
of the distribution on the x-axis. In fact, the distribution of deviations centers on zero — the
deviations have a mean of (as near as the computer can accurately calculate) zero:

# Show the mean of the deviations, rounded to 8 decimal places.
np.round(np.mean(deviations), 8)

np.float64(0.0)

16.6 The mean absolute deviation

Now let us consider the deviation value for KM and AOC:

print('Deviation for KM:', deviations[km_index])

Deviation for KM: 5098.036281179142

print('Deviation for AOC:', deviations[aoc_index])

Deviation for AOC: -15977.963718820858
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We have the same problem as before. Yes, we see that KM has a positive deviation, and
therefore, that his district is more wealthy than average across the 441 districts. Conversely
AOC’s district has a negative deviation, and is poorer than average. But we still lack a
standard measure of how far away from the mean each district is, in terms of the spread of
values in the histogram.

To get such a standard measure, we would like idea of a typical or average deviation. Then we
will compare KM’s and AOC’s deviations to the average deviation, to see if they are unusually
far from the mean.

You have just seen above that we cannot use the literal average (mean) of the deviations for
this purpose because the positive and negative deviations will exactly cancel out, and the mean
deviation will always be as near as the computer can calculate to zero.

To stop the negatives canceling the positives, we can simply knock the minus signs off all the
negative deviations.

This is the job of the NumPy abs function — where abs is short for absolute.

Note 38: The np.abs function

The np.abs function will knock minus signs off negative values, like this:

np.abs(-3.1)

np.float64(3.1)

np.abs([-1, 0, 1, -2])

array([1, 0, 1, 2])

To get an average of the deviations, regardless of whether they are positive or negative, we can
take the mean of the absolute deviations, like this:

# The Mean Absolute Deviation (MAD)
abs_deviations = np.abs(deviations)
mad = np.mean(abs_deviations)
# Show the result
mad

np.float64(15101.657570662428)

314



This is the Mean Absolute Deviation (MAD). It is one measure of the typical spread. MAD
is the average distance (regardless of positive or negative) of a value from the mean of the
values.

We can get an idea of how typical a particular deviation is by dividing the deviation by the
MAD value, like this:

print('Deviation in MAD units for KM:', deviations[km_index] / mad)

Deviation in MAD units for KM: 0.33758123949803737

print('Deviation in MAD units AOC:', deviations[aoc_index] / mad)

Deviation in MAD units AOC: -1.0580271499375542

16.7 The standard deviation

We are interested in the average deviation, but we find that a simple average of the deviations
from the mean always gives 0 (perhaps with some tiny calculation error), because the positive
and negative deviations cancel exactly.

The MAD calculation solves this problem by knocking the signs off the negative values before
we take the mean.

16.7.1 Squares of values and arrays

Another very popular way of solving the same problem is to precede the calculation by squaring
all the deviations. Python has an operator for the operation of taking values to the power of
another value: it is **. For example, to square a single number, we take the number to the
power of 2, like this:

# 10 to the power of 2.
10 ** 2

100

You can also use the power of ** operator on an array, and, as usual, that works elementwise.
The array you get back is the result of applying the to-the-power-of operation to all elements
of the array in turn:
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an_arr = np.array([2, 10, 12])
# All the elements in the array, to the power of 2.
an_arr ** 2

array([ 4, 100, 144])

16.7.2 Calculating the standard deviation

We can therefore square the deviations we calculated above, like this:

squared_deviations = deviations ** 2
# Show the first five values.
squared_deviations[:5]

array([2.48701328e+09, 1.91449685e+09, 1.66015207e+09, 1.16943233e+09,
1.16785980e+09])

Exponential format for showing very large and very small numbers

The squared_deviation values above appear in exponential notation (E-notation).
Other terms for E-notation are scientific notation, scientific form, or standard form.
E-notation is a useful way to express very large (far from 0) or very small (close to 0)
numbers in a more compact form.
E-notation represents a value as a floating point value 𝑚 multiplied by 10 to the power
of an exponent 𝑛:

𝑚 ∗ 10𝑛

𝑚 is a floating point number with one digit before the decimal point — so it can be any
value from 1.0 through 9.9999… 𝑛 is an integer (positive or negative whole number).
For example, the median household income of KM’s district is 77205 (dollars). We can
express that same number in E-notation as 7.7205∗104 . Python writes this as 7.7205e4,
where the number before the e is 𝑚 and the number after the e is the exponent value 𝑛.
E-notation is another way of writing the number, because 7.7205 ∗ 104 = 77205.

7.7205e4 == 77205

True

It is no great advantage to use E-notation in this case; 77205 is probably easier to read
and understand than 7.7205e4. The notation comes into its own where you start to
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lose track of the powers of 10 when you read a number — and that does happen when
the number becomes very long without E-notation. For example, 772052 = 5960612025.
5960612025 is long enough that you start having to count the digits to see how large it
is. In E-notation, that number is 5.960612025e9. If you remember that 109 is one US
billion, then the E-notation tells you at a glance that the value is about 5.9 billion.
Python makes its own decision whether to print out numbers using E-notation. This
only affects the display of the numbers; the underlying values remain the same whether
Python chooses to show them in E-notation or not.

The process of squaring the deviations turns all the negative values into positive values.

We can then take the average (mean) of the squared deviations to give a measure of the typical
squared deviation:

mean_squared_deviation = np.mean(squared_deviations)
mean_squared_deviation

np.float64(385971462.1165975)

Rather confusingly, the field of statistics uses the term variance to refer to the mean squared
deviation value. Just to emphasize that naming, let’s do the same calculation but using
“variance” as the variable name.

# Statistics calls the mean squared deviation - the "variance"
variance = np.mean(squared_deviations)
variance

np.float64(385971462.1165975)

It will come as no surprise to find that Numpy has a function to do the whole variance
calculation — subtracting the mean, and returning the average squared deviation — np.var:

# Use np.var to calculate the mean squared deviation directly.
np.var(incomes)

np.float64(385971462.1165975)
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The variance is the typical (in the sense of the mean) squared deviation. The units for the
variance, in our case, would be squared dollars. But we are more interested in the typical
deviation, in our original units – dollars rather than squared dollars.

So we take the square root of the mean squared deviation (the square root of the variance),
to get the standard deviation. It is the standard deviation in that it is a measure of typical
deviation, in the specific sense of the square root of the mean squared deviations.

# The standard deviation is the square root of the mean squared deviation.
# (and therefore, the square root of the variance).
standard_deviation = np.sqrt(mean_squared_deviation)
standard_deviation

np.float64(19646.156420954136)

Again, Numpy has a function to do this calculation directly: np.std:

# Use np.std to calculate the square root of the mean squared deviation
# directly.
np.std(incomes)

np.float64(19646.156420954136)

# Of course, np.std(incomes) is the same as:
np.sqrt(np.var(incomes))

np.float64(19646.156420954136)

The standard deviation (the square root of the mean squared deviation) is a popular alternative
to the Mean Absolute Deviation, as a measure of typical spread.

Figure 16.1 shows another histogram of the income values, marking the mean, the mean plus or
minus one standard deviation, and the mean plus or minus two standard deviations. You can
see that the mean plus or minus one standard deviation includes a fairly large proportion of the
data. The mean plus or minus two standard deviation includes a much larger proportion.

Now let us return to the question of how unusual our two congressional districts are in terms
of the distribution. First we calculate the number of standard deviations of each district from
the mean:
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Figure 16.1: Income histogram plus or minus 1 and 2 standard deviations

km_std_devs = deviations[km_index] / standard_deviation
print('Deviation in standard deviation units for KM:',

np.round(km_std_devs, 2))

Deviation in standard deviation units for KM: 0.26

aoc_std_devs = deviations[aoc_index] / standard_deviation
print('Deviation in standard deviation units for AOC:',

np.round(aoc_std_devs, 2))

Deviation in standard deviation units for AOC: -0.81

The values for each district are a re-expression of the income values in terms of the distribution.
They give the distance from the mean (positive or negative) in units of standard deviation.

16.8 Standard scores

We will often find uses for the procedure we have just applied, where we take the original
values (here, incomes) and:

• Subtract the mean to convert to deviations, then
• Divide by the standard deviation
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Let’s apply that procedure to all the incomes values.

First we calculate the standard deviation:

deviations = incomes - np.mean(incomes)
income_std = np.sqrt(np.mean(deviations ** 2))

Then we calculate standard scores:

deviations_in_stds = deviations / income_std
# Show the first five values.
deviations_in_stds[:5]

array([-2.53840816, -2.22715135, -2.07394072, -1.74064397, -1.73947326])

This procedure converts the original data (here incomes) to deviations from the mean in terms
of the standard deviation. The resulting values are called standard scores or z-scores. One
name for this procedure is “z-scoring”.

If you plot a histogram of the standard scores, you will see they have a mean of (actually
exactly) 0, and a standard deviation of (actually exactly) 1.
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With all this information — what should we conclude about the two districts in question?
KM’s district is 0.26 standard deviations above the mean, but that’s not enough to conclude
that it is unusual. We see from the histogram that a large proportion of the districts are at
least this distance from the mean. We can calculate that proportion directly.
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# Distances (negative or positive) from the mean.
abs_std_devs = np.abs(deviations_in_stds)
# Number where distance greater than KM distance.
n_gt_km = np.sum(abs_std_devs > km_std_devs)
prop_gt_km = n_gt_km / len(deviations_in_stds)
print("Proportion of districts further from mean than KM:",

np.round(prop_gt_km, 2))

Proportion of districts further from mean than KM: 0.82

A full 82% of districts are further from the mean than is KM’s district. KM’s district is richer
than average, but not unusual. The benefit of the standard deviation distance is that we
can see this directly from the value, without doing the calculation of proportions, because
the standard deviation is a measure of typical spread, and KM’s district is well-within this
measure.

AOC’s district is -0.81 standard deviations from the mean. This is a little more unusual than
KM’s score.

# Number where distance greater than AOC distance.
# Make AOC's distance positive to correspond to distance from the mean.
n_gt_aoc = np.sum(abs_std_devs > np.abs(aoc_std_devs))
prop_gt_aoc = n_gt_aoc / len(deviations_in_stds)
print("Proportion of districts further from mean than AOC:",

np.round(prop_gt_aoc, 2))

Proportion of districts further from mean than AOC: 0.35

Only 35% of districts are further from the mean than AOC’s district, but this is still a reason-
able proportion. We see from the standard score that AOC is within one standard deviation.
AOC’s district is poorer than average, but not to a remarkable degree.

16.9 Standard scores to compare values on different scales

Why are standard scores so useful? They allow us to compare values on very different scales.

Consider the values in Table 16.5. Each row of the table corresponds to a team competing in
the English Premier League (EPL) for the 2021-2022 season. For those of you with absolutely
no interest in sports, the EPL is the league of the top 20 teams in English football, or soccer
to our North American friends. The points column of the table gives the total number of
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points at the end of the 2021 season (from 38 games). The team gets 3 points for a win, and 1
point for a draw, so the maximum possible points from 38 games are 3 ∗ 38 = 114. The wages
column gives the estimated total wage bill in thousands of British Pounds (£1000).

Table 16.5: 2021 points and wage bills (£1000s) for EPL teams

team points wages
Manchester City 93 168572
Liverpool 92 148772
Chelsea 74 187340
Tottenham Hotspur 71 110416
Arsenal 69 118074
Manchester United 58 238780
West Ham United 56 77936
Leicester City 52 81590
Brighton and Hove Albion 51 49820
Wolverhampton Wanderers 51 62756
Newcastle United 49 73308
Crystal Palace 48 71910
Brentford 46 28606
Aston Villa 45 85330
Southampton 40 58657
Everton 39 110202
Leeds United 38 37354
Burnley 35 40830
Watford 23 42030
Norwich City 22 31750

Let’s say we own Crystal Palace Football Club. Crystal Palace was a bit below average in the
league in terms of points. Now we are thinking about whether we should invest in higher-paid
players for the coming season, to improve our points score, and therefore, league position.

One thing we might like to know is whether there is an association between the wage bill and
the points scored.

To look at that, we can do a scatter plot. This is a plot with — say — wages on the x-axis,
and points on the y-axis. For each team we have a pair of values — their wage bill and their
points scored. For each team, we put a marker on the scatter plot at the coordinates given by
the wage value (on the x-axis) and the points value (on the y-axis).

Here is that plot for our EPL data in Table 16.5, with the Crystal Palace marker picked out
in red.
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It looks like there is a rough association of wages and points; teams that spend more in wages
tend to have more points.

At the moment, the points and wages are in very different units. Points are on a possible scale
of 0 (lose every game) to 38 * 3 = 114 (win every game). Wages are in thousands of pounds.
Maybe we are not interested in the values in these units, but in how unusual the values are,
in terms of wages, and in terms of points.

This is a good application of standard scores. Standard scores convert the original values to
values on a standard scale, where 0 corresponds to an average value, 1 to a value one standard
deviation above the mean, and -1 to a value one standard deviation below the mean. If we
follow the standard score process for both points and wages, the values will be in the same
standard units.

To do this calculation, we need the values from the table. We follow the same recipe as before,
in loading the data with Pandas, and converting to arrays.

import numpy as np
import pandas as pd

points_wages = pd.read_csv('data/premier_league.csv')
points = np.array(points_wages['points'])
wages = np.array(points_wages['wages'])

As you recall, the standard deviation is the square root of the mean squared deviation. In
code:
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# The standard deviation is the square root of the
# mean squared deviation.
wage_deviations = wages - np.mean(wages)
wage_std = np.sqrt(np.mean(wage_deviations ** 2))
wage_std

np.float64(55523.946071289814)

Now we can apply the standard score procedure to wages. We divide the deviations by the
standard deviation.

standard_wages = (wages - np.mean(wages)) / wage_std

We apply the same procedure to the points:

point_deviations = points - np.mean(points)
point_std = np.sqrt(np.mean(point_deviations ** 2))
standard_points = point_deviations / point_std

Now, when we plot the standard score version of the points against the standard score version
of the wages, we see that they are in comparable units, each with a mean of 0, and a spread
(a standard deviation) of 1.
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Let us go back to our concerns as the owners of Crystal Palace. Counting down from the top
in the table above, we see that Crystal Palace is the 12th row. Therefore, we can get the
Crystal Palace wage value with:

# In Python the 12th value is at position (index) 11
cp_index = 11
cp_wages = wages[cp_index]
cp_wages

np.int64(71910)

We can get our wage bill in standard units in the same way:

cp_standard_wages = standard_wages[cp_index]
cp_standard_wages

np.float64(-0.3474473873890471)

Our wage bill is a below average, but its still within striking distance of the mean.

We know that we are comparing ourselves against the other teams, so perhaps we want to
increase our wage bill by one standard deviation, to push us above the mean, and somewhat
away from the center of the pack. If we add one standard deviation to our wage bill, that
increases the standard score of our wages by 1.

But — if we increase our wages by one standard deviation — how much can we expect that
to increase our points — in standard units.

That is question about the strength of the association between two measures — here wages
and points — and we will cover that topic in much more detail in Chapter 29. But, racing
ahead — here is the answer to the question we have just posed — the amount we expect to
gain in points, in standard units, if we increase our wages by one standard deviation (and
therefore, 1 in standard units).

For reasons we won’t justify now, we calculate the 𝑟 value of association between wages and
points, like this:

standards_multiplied = standard_wages * standard_points
r = np.mean(standards_multiplied)
r

np.float64(0.7080086644844557)

The 𝑟 value is the answer to our question. For every one unit increase in standard scores in
wages, we expect an increase of 𝑟 (0.708) standard score units in points.
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16.10 Conclusion

When we look at a set of values, we often ask questions about whether individual values are
unusual or surprising. One way of doing that is to look at where the values are in the sorted
order — for example, using the raw rank of values, or the proportion of values below this
value — the quantile position or percentile position of a value. Another measure of interest
is where a value is in comparison to the spread of all values either side of the mean. We use
the term “deviations” to refer to the original values after we have subtracted the mean of the
values. We can measure spread either side of the mean with metrics such as the mean of the
absolute deviations (MAD) and the square root of the mean squared deviations (the standard
deviation). One common use of the deviations and the standard deviation is to transform
values into standard scores. These are the deviations divided by the standard deviation, and
they transform values to have a standard mean (zero) and spread (standard deviation of
1). Standard scores make it easier to compare sets of values with very different ranges and
means.
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17 The Basic Ideas in Statistical Inference

Probabilistic statistical inference is a crucial part of the process of informing ourselves about
the world around us. Statistics and statistical inference help us understand our world and
make sound decisions about how to act.

More specifically, statistical inference is the process of drawing conclusions about populations
or other collections of objects about which we have only partial knowledge from samples.
Technically, inference may be defined as the selection of a probabilistic model to resemble the
process you wish to investigate, investigation of that model’s behavior, and interpretation of
the results. Fuller understanding of the nature of statistical inference comes with practice in
handling a variety of problems.

Until the 18th century, humanity’s extensive knowledge of nature and technology was not based
on formal probabilistic statistical inference. But now that we have already dealt with many of
the big questions that are easy to answer without probabilistic statistics, and now that we live
in a more ramified world than in earlier centuries, the methods of inferential statistics become
ever more important.

Furthermore, statistical inference will surely become ever more important in the future as
we voyage into realms that are increasingly difficult to comprehend. The development of an
accurate chronometer to tell time on sea voyages became a crucial need when Europeans sought
to travel to the New World. Similarly, probability and statistical inference become crucial as
we voyage out into space and down into the depths of the ocean and the earth, as well as probe
into the secrets of the microcosm and of the human mind and soul.

Where probabilistic statistical inference is employed, the inferential procedures may well not be
the crucial element. For example, the wording of the questions asked in a public-opinion poll
may be more critical than the statistical-inferential procedures used to discern the reliability
of the poll results. Yet we dare not disregard the role of the statistical procedures.

17.1 Knowledge without probabilistic statistical inference

Let us distinguish two kinds of knowledge with which inference at large (that is, not just
probabilistic statistical inference) is mainly concerned: a) one or more absolute measurements
on one or more dimensions of a collection of one or more items — for example, your income,
or the mean income of the people in your country; and b) comparative measurements and
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evaluations of two or more collections of items (especially whether they are equal or unequal)—
for example, the mean income in Brazil compared to the mean income in Argentina. Types
(a) and (b) both include asking whether there has been a change between one observation and
another.

What is the conceptual basis for gathering these types of knowledge about the world? I believe
that our rock bottom conceptual tool is the assumption of what we may call sameness, or
continuity, or constancy, or repetition, or equality, or persistence ; “constancy” and “continuity”
will be the terms used most frequently here, and I shall use them interchangeably.

Continuity is a non-statistical concept. It is a best guess about the next point beyond the
known observations, without any idea of the accuracy of the estimate. It is like testing the
ground ahead when walking in a marsh. It is local rather than global. We’ll talk a bit later
about why continuity seems to be present in much of the world that we encounter.

The other great concept in statistical inference, and perhaps in all inference taken together,
is representative (usually random) sampling, to be discussed in Chapter 18. Representative
sampling — which depends upon the assumption of sameness (homogeneity) throughout the
universe to be investigated — is quite different than continuity; representative sampling as-
sumes that there is no greater chance of a connection between any two elements that might
be drawn into the sample than between any other two elements; the order of drawing is im-
material. In contrast, continuity assumes that there is a greater chance of connection between
two contiguous elements than between either one of the elements and any of the many other
elements that are not contiguous to either. Indeed, the process of randomizing is a device for
doing away with continuity and autocorrelation within some bounded closed system — the
sample “frame.” It is an attempt to map (describe) the entire area ahead using the device
of the systematic survey. Random representative sampling enables us to make probabilistic
inferences about a population based on the evidence of a sample.

To return now to the concept of sameness: Examples of the principle are that we assume:
a) our house will be in the same place tomorrow as today; b) a hammer will break an egg
every time you hit the latter with the former (or even the former with the latter); c) if you
observe that the first fifteen persons you see walking out of a door at the airport are male,
the sixteenth probably will be male also; d) paths in the village stay much the same through
a person’s life; e) religious ritual changes little through the decades; f) your best guess about
tomorrow’s temperature or stock price is that will be the same as today’s. This principle of
constancy is related to David Hume’s concept of constant conjunction. When my children
were young, I would point to a tree on our lawn and ask: “Do you think that tree will be there
tomorrow?” And when they would answer “Yes,” I’d ask, “Why doesn’t the tree fall?” That’s
a tough question to answer.

There are two reasonable bases for predicting that the tree will be standing tomorrow. First
and most compelling for most of us is that almost all trees continue standing from day to day,
and this particular one has never fallen; hence, what has been in the past is likely to continue.
This assessment requires no scientific knowledge of trees, yet it is a very functional way to
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approach most questions concerning the trees — such as whether to hang a clothesline from it,
or whether to worry that it will fall on the house tonight. That is, we can predict the outcome
in this case with very high likelihood of being correct even though we do not utilize anything
that would be called either science or statistical inference. (But what do you reply when your
child says: “Why should I wear a seat belt? I’ve never been in an accident”?)

A second possible basis for prediction that the tree will be standing is scientific analysis of the
tree’s roots — how the tree’s weight is distributed, its sickness or health, and so on. Let’s put
aside this sort of scientific-engineering analysis for now.

The first basis for predicting that the tree will be standing tomorrow — sameness — is the
most important heuristic device in all of knowledge-gathering. It is often a weak heuristic;
certainly the prediction about the tree would be better grounded (!) after a skilled forester
examines the tree. But persistence alone might be a better heuristic in a particular case than
an engineering-scientific analysis alone.

This heuristic appears more obvious if the child — or the adult — were to respond to the
question about the tree with another question: Why should I expect it to fall ? In the absence
of some reason to expect change, it is quite reasonable to expect no change. And the child’s
new question does not duck the central question we have asked about the tree, any more than
one ducks a probability estimate by estimating the complementary probability (that is, unity
minus the probability sought); indeed, this is a very sound strategy in many situations.

Constancy can refer to location, time, relationship to another variable, or yet another dimen-
sion. Constancy may also be cyclical. Some cyclical changes can be charted or mapped with
relative certainty — for example the life-cycles of persons, plants, and animals; the diurnal
cycle of dark and light; and the yearly cycle of seasons. The courses of some diseases can also
be charted. Hence these kinds of knowledge have long been well known.

Consider driving along a road. One can predict that the price of the next gasoline station will
be within a few cents of the gasoline station that you just passed. But as you drive further
and further, the dispersion increases as you cross state lines and taxes differ. This illustrates
continuity.

The attention to constancy can focus on a single event, such as leaves of similar shape appearing
on the same plant. Or attention can focus on single sequences of “production,” as in the process
by which a seed produces a tree. For example, let’s say you see two puppies — one that looks
like a low-slung dachshund, and the other a huge mastiff. You also see two grown male dogs,
also apparently dachshund and mastiff. If asked about the parentage of the small ones, you are
likely — using the principle of sameness — to point — quickly and with surety — to the adult
dogs of the same breed. (Here it is important to notice that this answer implicitly assumes
that the fathers of the puppies are among these dogs. But the fathers might be somewhere
else entirely; it is in these ways that the principle of sameness can lead you astray.)

When applying the concept of sameness, the object of interest may be collections of data, as in
Semmelweiss’s (1983, 64) data on the consistent differences in rates of maternal deaths from
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childbed fever in two clinics with different conditions (see Table 17.1), or the similarities in sex
ratios from year to year in Graunt’s (1759, 304) data on christenings in London (Table 17.2),
or the stark effect in John Snow’s (Winslow 1980, 276) data on the numbers of cholera cases
associated with two London water suppliers (Table 17.3), or Kanehiro Takaki’s (Kornberg 1991,
9) discovery of the reduction in beriberi among Japanese sailors as a result of a change in diet
(Table 17.4). These data seem so overwhelmingly clear cut that our naive statistical sense
makes the relationships seem deterministic, and the conclusions seems straightforward. (But
the same statistical sense frequently misleads us when considering sports and stock market
data.)

Table 17.1: Deaths of Mothers from childbed fever in two clinics

First clinic Second clinic
Births Deaths Rate Births Deaths Rate

1841 3,036 237 7.7 2,442 86 3.5
1842 3,287 518 15.8 2,659 202 7.5
1843 3,060 274 8.9 2,739 164 5.9
1844 3,157 260 8.2 2,956 68 2.3
1845 3,492 241 6.8 3,241 66 2.03
1845 4,010 459 11.4 3,754 105 2.7
Total 20,042 1,989 17,791 691
Average 9.92 3.38

Table 17.2: Ratio of number of male to number of female christenings in London

Period Male / Female ratio
1629-1636 1.072
1637-1640 1.073
1641-1648 1.063
1649-1656 1.095
1657-1660 1.069

Table 17.3: Rates of death from cholera for three water suppliers

Water supplier Cholera deaths per 10,000 houses
Southwark and Vauxhall 71
Lambeth 5
Rest of London 9
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Table 17.4: Takaki’s Japanese Naval Records of Deaths from Beriberi

Year Diet Total Navy Personnel Deaths from Beriberi
1880 Rice diet 4,956 1,725
1881 Rice diet 4,641 1,165
1882 Rice diet 4,769 1,929
1883 Rice Diet 5,346 1,236
1884 Change to new diet 5,638 718
1885 New diet 6,918 41
1886 New diet 8,475 3
1887 New diet 9,106 0
1888 New diet 9,184 0

Constancy and sameness can be seen in macro structures; consider, for example, the constant
location of your house. Constancy can also be seen in micro aggregations — for example, the
raindrops and rain that account for the predictably fluctuating height of the Nile, or the ratio
of boys to girls born in London, cases in which we can average to see the “statistical” sameness.
The total sum of the raindrops produces the level of a reservoir or a river from year to year,
and the sum of the behaviors of collections of persons causes the birth rates in the various
years.

Statistical inference is only needed when a person thinks that s/he might have found a pattern
but the pattern is not completely obvious to all. Probabilistic inference works to test — either
to confirm or discount — the belief in the pattern’s existence. We will see such cases in the
following chapter.

People have always been forced to think about and act in situations that have not been constant
— that is, situations where the amount of variability in the phenomenon makes it impossible
to draw clear cut, sensible conclusions. For example, the appearance of game animals in given
places and at given times has always been uncertain to hunters, and therefore it has always
been difficult to know which target to hunt in which place at what time. And of course
variability of the weather has always made it a very uncertain element. The behavior of one’s
enemies and friends has always been uncertain, too, though uncertain in a manner different
from the behavior of wild animals; there often is a gaming element in interactions with other
humans. But in earlier times, data and techniques did not exist to enable us to bring statistical
inference to bear.

17.2 The treatment of uncertainty

The purpose of statistical inference is to help us peer through the veil of variability when it
obscures the main thrust of the data, so as to improve the decisions we make. Statistical
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inference (or in most cases, simply probabilistic estimation) can help:

• a gambler deciding on the appropriate odds in a betting game when there seems to be
little or no difference between two or more outcomes;

• an astronomer deciding upon one or another value as the central estimate for the location
of a star when there is considerable variation in the observations s/he has made of the
star;

• a basketball coach pondering whether to remove from the game her best shooter who
has heretofore done poorly tonight;

• an oil-drilling firm debating whether to follow up a test-well drilling with a full-bore
drilling when the probability of success is not overwhelming but the payoff to a gusher
could be large.

Returning to the tree near the Simon house: Let’s change the facts. Assume now that one
major part of the tree is mostly dead, and we expect a big winter storm tonight. What is
the danger that the tree will fall on the house? Should we spend $1500 to have the mostly-
dead third of it cut down? We know that last year a good many trees fell on houses in the
neighborhood during such a storm.

We can gather some data on the proportion of old trees this size that fell on houses — about 5
in 100, so far as we can tell. Now it is no longer an open-and-shut case about whether the tree
will be standing tomorrow, and we are using statistical inference to help us with our thinking.
We proceed to find a set of trees that we consider similar to this one, and study the variation
in the outcomes of such trees. So far we have estimated that the average for this group of trees
— the mean (proportion) that fell in the last big storm — is 5 percent. Averages are much
more “stable” — that is, more similar to each other — than are individual cases.

Notice how we use the crucial concept of sameness: We assume that our tree is like the others
we observed, or at least that it is not systematically different from most of them and it is
more-or-less average.

How would our thinking be different if our data were that one tree in 10 had fallen instead of
5 in 100? This is a question in statistical inference.

How about if we investigate further and find that 4 of 40 elms fell, but only one of 60 oaks, and
ours is an oak tree. Should we consider that oaks and elms have different chances of falling?
Proceeding a bit further, we can think of the question as: Should we or should we not consider
oaks and elms as different? This is the type of statistical inference called “hypothesis testing”:
We apply statistical procedures to help us decide whether to treat the two classes of trees as
the same or different. If we should consider them the same, our worries about the tree falling
are greater than if we consider them different with respect to the chance of damage.1

1It is because hypothesis testing focuses on this most basic of inferential processes — deciding “same” or
“different” — that I believe it to be a more basic technique than estimating confidence intervals, which focus
on the accuracy of estimates.
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Notice that statistical inference was not necessary for accurate prediction when I asked the
kids about the likelihood of a live tree falling on a day when there would be no storm. So it
is with most situations we encounter. But when the assumption of constancy becomes shaky
for one reason or another, as with the sick tree falling in a storm, we need a more refined
form of thinking. We collect data on a large number of instances, inquire into whether the
instances in which we are interested (our tree and the chance of it falling) are representative
— that is, whether it resembles what we would get if we drew a sample randomly — and we
then investigate the behavior of this large class of instances to see what light it throws on the
instances(s) in which we are interested.

The procedure in this case — which we shall discuss in greater detail later on — is to ask: If
oaks and elms are not different, how likely is it that only one of 60 oaks would fall whereas 4 of
40 elms would fall? Again, notice the assumption that our tree is “representative” of the other
trees about which we have information — that it is not systematically different from most of
them, but rather that it is more-or-less average. Our tree certainly was not chosen randomly
from the set of trees we are considering. But for purposes of our analysis, we proceed as if it
had been chosen randomly — because we deem it “representative.”

This is the first of two roles that the concept of randomness plays in statistical thinking. Here
is an example of the second use of the concept of randomness: We conduct an experiment
— plant elm and oak trees at randomly-selected locations on a plot of land, and then try to
blow them down with a wind-making machine. (The random selection of planting spots is
important because some locations on a plot of ground have different growing characteristics
than do others.) Some purists object that only this sort of experimental sampling is a valid
subject of statistical inference; it can never be appropriate, they say, to simply assume on
the basis of other knowledge that the tree is representative. I regard that purist view as a
helpful discipline on our thinking. But accepting its conclusion — that one should not apply
statistical inference except to randomly-drawn or randomly-constituted samples — would take
from us a tool that has proven useful in a variety of activities.

As discussed earlier in this chapter, the data in some (probably most) scientific situations are
so overwhelming that one can proceed without probabilistic inference. Historical examples
include those shown above of Semmelweiss and puerperal fever, and John Snow and cholera.2
But where there was lack of overwhelming evidence, the causation of many diseases long
remained unclear for lack of statistical procedures. This led to superstitious beliefs and counter-
productive behavior, such as quarantines against plague often were. Some effective practices
also arose despite the lack of sound theory, however — the waxed costumes of doctors, and the
burning of mattresses, despite the wrong theory about the causation of plague; see (Cipolla
1981).

2A peculiar perverseness associated with the knowledge of statistical inference is that very strong findings,
which require little or no formal inference to demonstrate and which are so powerful that they can be shown
with a simple graph or table, are very hard to publish in social science literature because they do not meet
the tests of “rigor,” and “elegance.” Editors view them as detracting from the “technical level” of their
journals. A good many of the greatest discoveries of the past would nowadays fall in this category of being
difficult or impossible to publish.
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So far I have spoken only of predictability and not of other elements of statistical knowledge
such as understanding and control. This is simply because statistical correlation is the bed
rock of most scientific understanding, and predictability. Later we will expand the discussion
beyond predictability; it holds no sacred place here.

17.3 Where statistical inference becomes crucial

There was little role for statistical inference until about three centuries ago because there
existed very few scientific data. When scientific data began to appear, the need emerged for
statistical inference to improve the interpretation of the data. As we saw, statistical inference
is not needed when the evidence is overwhelming. A thousand cholera cases at one well and
zero at another obviously does not require a statistical test. Neither would 999 cases to one,
or even 700 cases to 300, because our inbred and learned statistical senses can detect that the
two situations are different. But probabilistic inference is needed when the number of cases is
relatively small or where for other reasons the data are somewhat ambiguous.

For example, when working with the 17th century data on births and deaths, John Graunt
— great statistician though he was — drew wrong conclusions about some matters because
he lacked modern knowledge of statistical inference. For example, he found that in the rural
parish of Romsey “there were born 15 Females for 16 Males, whereas in London there were 13
for 14, which shows, that London is somewhat more apt to produce Males, then the country”
(p. 71). He suggests that the “curious” inquire into the causes of this phenomenon, apparently
not recognizing — and at that time he had no way to test — that the difference might be due
solely to chance. He also notices (p. 94) that the variations in deaths among years in Romsey
were greater than in London, and he attempted to explain this apparent fact (which is just a
statistical artifact) rather than understanding that this is almost inevitable because Romsey
is so much smaller than London. Because we have available to us the modern understanding
of variability, we can now reach sound conclusions on these matters.3

Summary statistics — such as the simple mean — are devices for reducing a large mass of data
(inevitably confusing unless they are absolutely clear cut) to something one can manage to
understand. And probabilistic inference is a device for determining whether patterns should
be considered as facts or artifacts.

Here is another example that illustrates the state of early quantitative research in medicine:

Exploring the effect of a common medicinal substance, Bőcker examined the effect
of sasparilla on the nitrogenous and other constituents of the urine. An individual
receiving a controlled diet was given a decoction of sasparilla for a period of twelve
days, and the volume of urine passed daily was carefully measured. For a further
twelve days that same individual, on the same diet, was given only distilled water,

3I (JLS) benefited from the discussion of this matter by Hald (1990, 93ff).
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and the daily quantity of urine was again determined. The first series of researches
gave the following figures (in cubic centimeters): 1,467, 1,744, 1,665, 1,220, 1,161,
1,369, 1,675, 2,199, 887, 1,634, 943, and 2,093 (mean = 1,499); the second series:
1,263, 1,740, 1,538, 1,526, 1,387, 1,422, 1,754, 1,320, 1,809, 2,139, 1,574, and 1,114
(mean = 1,549). Much uncertainty surrounded the exactitude of these measure-
ments, but this played little role in the ensuing discussion. The fundamental issue
was not the quality of the experimental data but how inferences were drawn from
those data (Coleman 1987, 207).

The experimenter Böcker had no reliable way of judging whether the data for the two groups
were or were not meaningfully different, and therefore he arrived at the unsound conclusion
that there was indeed a difference. (Gustav Radicke used this example as the basis for early
work on statistical significance (Støvring 1999).)

Another example: Joseph Lister convinced the scientific world of the germ theory of infection,
and the possibility of preventing death with a disinfectant, with these data: Prior to the use of
antiseptics — 16 post-operative deaths in 35 amputations; subsequent to the use of antiseptics
— 6 deaths in 40 amputations (Winslow 1980, 303). But how sure could one be that a difference
of that size might not occur just by chance? No one then could say, nor did anyone inquire,
apparently.

Here’s another example of great scientists falling into error because of a too-primitive approach
to data (Feller 1968, 1:69–70): Charles Darwin wanted to compare two sets of measured data,
each containing 16 observations. At Darwin’s request, Francis Galton compared the two
sets of data by ranking each, and then comparing them pairwise. The a’s were ahead 13
times. Without knowledge of the actual probabilities Galton concluded that the treatment
was effective. But, assuming perfect randomness, the probability that the a’s beat [the others]
13 times or more equals 3/16. This means that in three out of sixteen cases a perfectly
ineffectual treatment would appear as good or better than the treatment classified as effective
by Galton.

That is, Galton and Darwin reached an unsound conclusion. As Feller (1968, 1:70) says,
“This shows that a quantitative analysis may be a valuable supplement to our rather shaky
intuition”.

Looking ahead, the key tool in situations like Graunt’s and Böcker’s and Lister’s is creating
ceteris paribus — making “everything else the same” — with random selection in experiments,
or at least with statistical controls in non-experimental situations.

17.4 Conclusions

In all knowledge-seeking and decision-making, our aim is to peer into the unknown and reduce
our uncertainty a bit. The two main concepts that we use — the two great concepts in all of
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scientific knowledge-seeking, and perhaps in all practical thinking and decision-making — are
a) continuity (or non-randomness) and the extent to which it applies in given situation, and
b) random sampling, and the extent to which we can assume that our observations are indeed
chosen by a random process.
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18 Introduction to Statistical Inference

The usual goal of a statistical inference is a decision about which of two or more hypotheses
a person will thereafter choose to believe and act upon. The strategy of such inference is to
consider the behavior of a given universe in terms of the samples it is likely to produce, and if
the observed sample is not a likely outcome of sampling from that universe, we then proceed as
if the sample did not in fact come from that universe. (The previous sentence is a restatement
in somewhat different form of the core of statistical analysis.)

18.1 Statistical inference and random sampling

Continuity and sameness is the fundamental concept in inference in general, as discussed in
Chapter 17. Random sampling is the second great concept in inference, and it distinguishes
probabilistic statistical inference from non-statistical inference as well as from non-probabilistic
inference based on statistical data.

Let’s begin the discussion with a simple though unrealistic situation. Your friend Arista a)
looks into a cardboard carton, b) reaches in, c) pulls out her hand, and d) shows you a green
ball. What might you reasonably infer?

You might at least be fairly sure that the green ball came from the carton, though you recognize
that Arista might have had it concealed in her hand when she reached into the carton. But
there is not much more you might reasonably conclude at this point except that there was at
least one green ball in the carton to start with. There could be no more balls; there could be
many green balls and no others; there could be a thousand red balls and just one green ball;
and there could be one green ball, a hundred balls of different colors, and two pounds of mud
— given that she looked in first, it is not improbable that she picked out the only green ball
among other material of different sorts.

There is not much you could say with confidence about the probability of yourself reaching
into the same carton with your eyes closed and pulling out a single green ball. To use other
language (which some philosophers might say is not appropriate here as the situation is too
specific), there is little basis for induction about the contents of the box. Nor is the situation
very different if your friend reaches in three times in a row and hands you a green ball each
time.
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So far we have put our question rather vaguely. Let us frame a more precise inquiry: What
do we predict about the next item(s) we might draw from the carton? If we assume — based
on who-knows-what information or notions — that another ball will emerge, we could simply
use the principle of sameness and (until we see a ball of another color) predict that the next
ball will be green, whether one or three or 100 balls is (are) drawn.

But now what about if Arista pulls out nine green balls and one red ball? The principle of
sameness cannot be applied as simply as before. Based on the last previous ball, the next one
will be red. But taking into account all the balls we have seen, the next will “probably” be
green. We have no solid basis on which to go further. There cannot be any “solution” to the
“problem” of reaching a general conclusion on the basis of these specific pieces of evidence.

Now consider what you might conclude if you were told that a single green ball had been drawn
with a random sampling procedure from a box containing nothing but balls. Knowledge that
the sample was drawn randomly from a given universe is grounds for belief that one knows
much more than if a sample were not drawn randomly. First, you would be sure — if you had
reasonable basis to believe that the sampling really was random, which is not easy to guarantee
— that the ball came from the box. Second, you would guess that the proportion of green balls
is not very small, because if there are only a few green balls and many other-colored balls,
it would be unusual — that is, the event would have a low probability — to draw a green
ball. Not impossible, but unlikely. And we can compute the probability of drawing a green
ball — or any other combination of colors — for different assumed compositions within the box.
So the knowledge that the sampling process is random greatly increases our ability — or our
confidence in our ability — to infer the contents of the box.

Let us note well the strategy of the previous paragraph: Ask about the probability that one or
more various possible contents of the box (the “universe”) will produce the observed sample,
on the assumption that the sample was drawn randomly. This is the central strategy of all
statistical inference, though I do not find it so stated elsewhere. We shall come back to this
idea shortly.

There are several kinds of questions one might ask about the contents of the box. One general
category includes questions about our best guesses of the box’s contents — that is, questions
of estimation. Another category includes questions about our surety of that description, and
our surety that the contents are similar or different from the contents of other boxes; the
consideration of surety follows after estimates are made. The estimation questions can be
subtle and unexpected (Savage 1972, chap. 15), but do not cause major controversy about the
foundations of statistics. So we can quickly move on to questions about the extent of surety
in our estimations.

Consider your reaction if the sampling produces 10 green balls in a row, or 9 out of 10. If
you had no other information (a very important assumption that we will leave aside for now),
your best guess would be that the box contains all green balls, or a proportion of 9 of 10, in
the two cases respectively. This estimation process seems natural enough.
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You would be surprised if someone told you that instead of the box containing the proportion
in the sample, it contained just half green balls. How surprised? Intuitively, the extent of
your surprise would depend on the probability that a half-green “universe” would produce 10
or 9 green balls out of 10. This surprise is a key element in the logic of the hypothesis-testing
branch of statistical inference.

We learn more about the likely contents of the box by asking about the probability that
various specific populations of balls within the box would produce the particular sample that
we received. That is, we can ask how likely a collection of 25 percent green balls is to produce
(say) 9 of 10 green ones, and how likely collections of 50 percent, 75 percent, 90 percent (and
any other collections of interest) are to produce the observed sample. That is, we ask about
the consistency between any particular hypothesized collection within the box and the sample
we observe. And it is reasonable to believe that those universes which have greater consistency
with the observed sample — that is, those universes that are more likely to produce the
observed sample — are more likely to be in the box than other universes. This (to repeat, as I
shall repeat many times) is the basic strategy of statistical investigation. If we observe 9 of 10
green balls, we then determine that universes with (say) 9/10 and 10/10 green balls are more
consistent with the observed evidence than are universes of 0/10 and 1/10 green balls. So
by this process of considering specific universes that the box might contain, we make possible
more specific inferences about the box’s probable contents based on the sample evidence than
we could without this process.

Please notice the role of the assessment of probabilities here: By one technical means or
another (either simulation or formulas), we assess the probabilities that a particular universe
will produce the observed sample, and other samples as well.

It is of the highest importance to recognize that without additional knowledge (or assumption)
one cannot make any statements about the probability of the sample having come from any
particular universe, on the basis of the sample evidence. (Better read that last sentence again.)
We can only speak about the probability that a particular universe will produce the observed
sample, a very different matter. This issue will arise again very sharply in the context of
confidence intervals.

Let us generalize the steps in statistical inference:

1. Frame the original question as: What is the chance of getting the observed sample
x from population X? That is, what is probability of (If x then X)?

2. Proceed to this question: What kinds of samples does X produce, with which
probability? That is, what is the probability of this particular x coming from X? That
is, what is p(x|X)?

3. Actually investigate the behavior of X with respect to x and other samples. One
can do this in two ways:
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1. Use the formulaic calculus of probability, perhaps resorting to Monte Carlo methods
if an appropriate formula does not exist. Or,

2. Use resampling (in the larger sense), the domain of which equals (all Monte Carlo
experimentation) minus (the use of Monte Carlo methods for approximations, in-
vestigation of complex functions in statistics and other theoretical mathematics,
and uses elsewhere in science). Resampling in its more restricted sense includes the
bootstrap, permutation tests, and other non-parametric methods.

4. Interpretation of the probabilities that result from step 3 in terms of

i) acceptance or rejection of hypotheses, ii) surety of conclusions, or iii) inputs to
decision theory.

Here is a short definition of statistical inference:

The selection of a probabilistic model that might resemble the process you wish to
investigate, the investigation of that model’s behavior, and the interpretation of
the results.

We will get even more specific about the procedure when we discuss the canonical procedures
for hypothesis testing and for the finding of confidence intervals in the chapters on those
subjects.

The discussion so far has been in the spirit of what is known as hypothesis testing. The result
of a hypothesis test is a decision about whether or not one believes that the sample is likely
to have been drawn randomly from the “benchmark universe” X. The logic is that if the
probability of such a sample coming from that universe is low, we will then choose to believe
the alternative — to wit, that the sample came from the universe that resembles the sample.

The underlying idea is that if an event would be very surprising if it really happened — as it
would be very surprising if the dog had really eaten the homework (see Chapter 21) — we are
inclined not to believe in that possibility. (This logic will be explored further in later chapters
on hypothesis testing.)

We have so far assumed that our only relevant knowledge is the sample. And though we
almost never lack some additional information, this can be a sensible way to proceed when
we wish to suppress any other information or speculation. This suppression is controversial;
those known as Bayesians or subjectivists want us to take into account all the information
we have. But even they would not dispute suppressing information in certain cases — such
as a teacher who does not want to know students’ IQ scores because s/he might want avoid
the possibility of unconsciously being affected by that score, or an employer who wants not
to know the potential employee’s ethnic or racial background even though the hiring process
might be more “successful” on some metric, or a sports coach who refuses to pick the starting
team each year until the players have competed for the positions.
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Now consider a variant on the green-ball situation discussed above. Assume now that you
are told that samples of balls are alternately drawn from one of two specified universes —
two buckets of balls, one with 50 percent green balls and the other with 80 percent green
balls. Now you are shown a sample of nine green and one red balls drawn from one of those
buckets. On the basis of your sample you can then say how probable it is that the sample
came from one or the other universe. You proceed by computing the probabilities (often called
the likelihoods in this situation) that each of those two universes would individually produce
the observed samples — probabilities that you could arrive at with resampling, with Pascal’s
Triangle, or with a table of binomial probabilities, or with the Normal approximation and the
Z distribution, or with yet other devices. Those probabilities are .01 and .27, and the ratio of
the two (0.1/.27) is a bit less than .04. That is, fair betting odds are about 1 to 27.

Let us consider a genetics problem on this model. Plant A produces 3/4 black seeds and 1/4
reds; plant B produces all reds. You get a red seed. Which plant would you guess produced
it? You surely would guess plant B. Now, how about 9 reds and a black, from Plants A and
C, the latter producing 50 percent reds on average?

To put the question more precisely: What betting odds would you give that the one red seed
came from plant B? Let us reason this way: If you do this again and again, 4 of 5 of the red
seeds you see will come from plant B. Therefore, reasonable (or “fair”) odds are 4 to 1, because
this is in accord with the ratios with which red seeds are produced by the two plants — 4/4
to 1/4.

How about the sample of 9 reds and a black, and plants A and C? It would make sense that
the appropriate odds would be derived from the probabilities of the two plants producing that
particular sample, probabilities which we computed above.

Now let us move to a bit more complex problem: Consider two buckets — bucket G with 2
red and 1 black balls, and bucket H with 100 red and 100 black balls. Someone flips a coin
to decide which bucket will be drawn from, reaches into that bucket, and chooses two balls
without replacing the first one before drawing the second. Both are red. What are the odds
that the sample came from bucket G? Clearly, the answer should derive from the probabilities
that the two buckets would produce the observed sample.

(Now just for fun, how about if the first ball drawn is thrown back after examining? What
now are the appropriate odds?)

Let’s restate the central issue. One can state the probability that a particular plant which
produces on average 1 red and 3 black seeds will produce one red seed, or 5 reds among a
sample of 10. But without further assumptions — such as the assumption above that the
possibilities are limited to two specific universes — one cannot say how likely a given red seed
is to have come from a given plant, even if we know that that plant produces only reds. (For
example, it may have come from other plants producing only red seeds.)

When we limit the possibilities to two universes (or to a larger set of specified universes) we
are able to put a probability on one hypothesis or another. But to repeat, in many or most
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cases, one cannot reasonably assume it is only one or the other. And then we cannot state
any odds that the sample came from a particular universe. This is a very difficult point to
grasp, experience shows, but a crucial one. (It is the sort of subtle issue that makes statistics
so difficult.)

The additional assumptions necessary to talk about the probability that the red seed came
from a given plant are the stuff of statistical inference. And they must be combined with such
“objective” probabilistic assessments as the probability that a 1-red-3-black plant will produce
one red, or 5 reds among 10 seeds.

Now let us move one step further. Instead of stating as a fact under our control that there is
a .5 chance of the sample being drawn from each of the two buckets in the problem above, let
us assume that we do not know the probability of each bucket being picked, but instead we
estimate a probability of .5 for each bucket, based on a variety of other information that all is
uncertain. But though the facts are now different, the most reasonable estimate of the odds
that the observed sample was drawn from one or the other bucket will not be different than
before — because in both situations we were working with a “prior probability” of .5.

Now let us go a step further by allowing the universes from which the sample may have come
to have different assumed probabilities as well as different compositions. That is, we now
consider prior probabilities other than .5.

How do we decide which universe(s) to investigate for the probability of producing the observed
sample, and of producing samples that are even less likely, in the sense of being more surprising?
That judgment depends upon the purpose of your analysis, upon your point of view of how
statistics ought to be done, and upon some other factors.

It should be noted that the logic described so far applies in exactly the same fashion whether
we do our work estimating probabilities with the resampling method or with conventional
methods. We can figure the probability of nine or more green chips from a universe of (say) p
= .7 with either approach.

So far we have discussed the comparison of various hypotheses and possible universes. We
must also consider where the consideration of the reliability of estimates comes in. This leads
to the concept of confidence limits, which will be discussed in Chapter 26 and Chapter 27.

18.2 Samples Whose Observations May Have More Than Two
Values

So far we have discussed samples and universes that we can characterize as proportions of
elements which can have only one of two characteristics — green or other, in this case, which
is equivalent to “1” or “0.” This expositional choice has been solely for clarity. All the ideas
discussed above pertain just as well to samples whose observations may have more than two
values, and which may be either discrete or continuous.
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18.3 Summary and conclusions

A statistical question asks about the probabilities of a sample having arisen from various source
universes in light of the evidence of a sample. In every case, the statistical answer comes from
considering the behavior of particular specified universes in relation to the sample evidence
and to the behavior of other possible universes. That is, a statistical problem is an exercise in
postulating universes of interest and interpreting the probabilistic distributions of results of
those universes. The preceding sentence is the key operational idea in statistical inference.

Different sorts of realistic contexts call for different ways of framing the inquiry. For each
of the established models there are types of problems which fit that model better than other
models, and other types of problems for which the model is quite inappropriate.

Fundamental wisdom in statistics, as in all other contexts, is to employ a large tool kit rather
than just applying only a hammer, screwdriver, or wrench no matter what the problem is at
hand. (Philosopher Abraham Kaplan once stated Kaplan’s Law of scientific method: Give
a small boy a hammer and there is nothing that he will encounter that does not require
pounding.) Studying the text of a poem statistically to infer whether Shakespeare or Bacon
was the more likely author is quite different than inferring whether bioengineer Smythe can
produce an increase in the proportion of calves, and both are different from decisions about
whether to remove a basketball player from the game or to produce a new product.

Some key points: 1) In statistical inference as in all sound thinking, one’s purpose is central.
All judgments should be made relative to that purpose, and in light of costs and benefits.
(This is the spirit of the Neyman-Pearson approach). 2) One cannot avoid making judgments;
the process of statistical inference cannot ever be perfectly routinized or objectified. Even in
science, fitting a model to experience requires judgment. 3) The best ways to infer are differ-
ent in different situations — economics, psychology, history, business, medicine, engineering,
physics, and so on. 4) Different tools must be used when the situations call for them — sequen-
tial vs. fixed sampling, Neyman-Pearson vs. Fisher, and so on. 5) In statistical inference it is
wise not to argue about the proper conclusion when the data and procedures are ambiguous.
Instead, whenever possible, one should go back and get more data, hence lessening the impor-
tance of the efficiency of statistical tests. In some cases one cannot easily get more data, or
even conduct an experiment, as in biostatistics with cancer patients. And with respect to the
past one cannot produce more historical data. But one can gather more and different kinds of
data, e.g. the history of research on smoking and lung cancer.
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19 Point Estimation

One of the great questions in statistical inference is: How big is it? This can mean — How
long? How deep? How much time? At what angle?

This question about size may pertain to a single object, of which there are many measurements;
an example is the location of a star in the heavens. Or the question may pertain to a varied
set of elements and their measurements; examples include the effect of treatment with a given
drug, and the incomes of the people of the United States in 1994.

From where the observer stands, having only the evidence of a sample in hand, it often is
impossible to determine whether the data represent multiple observations of a single object, or
single (or multiple) observations of multiple objects. For example, from crude measurements of
weight you could not know whether one person is being weighed repeatedly, or several people
have been weighed once. Hence all the following discussion of point estimation is the same for
both of these situations.

The word “big” in the first sentence above is purposely vague, because there are many possible
kinds of estimates that one might wish to make concerning a given object or collection. For a
single object like a star, one surely will wish to make a best guess about its location. But about
the effects of a drug treatment, or the incomes of a nation, there are many questions that one
may wish to answer. The average effect or income is a frequent and important object of our
interest. But one may also wish to know about the amount of dispersion in the distribution
of treatment effects, or of incomes, or the symmetry of the distribution. And there are still
other questions one may wish to answer.

Even if we focus on the average, the issue often is less clear cut than we may think at first. If
we are to choose a single number to characterize the population (universe) from which a given
set of data has been drawn, what should that representative number be for the case at hand?
The answer must depend on the purpose with which we ask the question, of course. There are
several main possibilities such as the mean, the median, and the mode.

Even if we confine our attention to the mean as our measure of the central tendency of a
distribution, there are various ways of estimating it, each of them having a different rationale.
The various methods of estimation often lead to the same estimate, especially if the distribution
is symmetric (such as the distribution of errors you make in throwing darts at a dart board).
But in an asymmetric case such as a distribution of incomes, the results may differ among the
contending modes of estimation. So the entire topic is more messy than appears at first look.
Though we will not inquire into the complexities, it is important that you understand that the
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matter is not as simple as it may seem. (See Savage (1972), Chapter 15, for more discussion
of this topic.)

19.1 Ways to estimate the mean

19.1.1 The Method of Moments

Since elementary school you have been taught to estimate the mean of a universe (or calculate
the mean of a sample) by taking a simple arithmetic average. A fancy name for that process
is “the method of moments.” It is the equivalent of estimating the center of gravity of a pole
by finding the place where it will balance on your finger. If the pole has the same size and
density all along its length, that balance point will be halfway between the endpoints, and the
point may be thought of as the arithmetic average of the distances from the balance point of
all the one-centimeter segments of the pole.

Consider this example:

Example: Twenty-nine Out of Fifty People Polled Say They Will Vote For The
Democrat. Who Will Win The Election? The Relationship Between The Sample
Proportion and The Population Proportion in a Two-Outcome Universe.

You take a random sample of 50 people in Maryland and ask which party’s candidate for
governor they will vote for. Twenty-nine say they will vote for the Democrat. Let’s say it
is reasonable to assume in this case that people will vote exactly as they say they will. The
statistical question then facing you is: What proportion of the voters in Maryland will vote
for the Democrat in the general election?

Your intuitive best guess is that the proportion of the “universe” — which is composed of
voters in the general election, in this case — will be the same as the proportion of the sample.
That is, 58 percent = 29/50 is likely to be your guess about the proportion that will vote
Democratic. Of course, your estimate may be too high or too low in this particular case, but
in the long run — that is, if you take many samples like this one — on the average the sample
mean will equal the universe (population) proportion, for reasons to be discussed later.

The sample mean seems to be the “natural” estimator of the population mean in this and
many other cases. That is, it seems quite natural to say that the best estimate is the sample
mean, and indeed it probably is best. But why? This is the problem of inverse probability
that has bedeviled statisticians for two centuries.

If the only information that you have (or that seems relevant) is the evidence of the sample,
then there would seem to be no basis for judging that the shape and location of the population
differs to the “left” or “right” from that of the sample. That is often a strong argument.

Another way of saying much the same thing: If a sample has been drawn randomly, each single
observation is a representative estimator of the mean; if you only have one observation, that
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observation is your best guess about the center of the distribution (if you have no reason to
believe that the distribution of the population is peculiar — such as not being symmetrical).
And therefore the sum of 2, 3…n of such observations (divided by their number) should have
that same property, based on basic principles.

But if you are on a ship at sea and a leaf comes raining down from the sky, your best guess
about the location of the tree from which it comes is not directly above you, and if two leaves
fall, the midpoint of them is not the best location guess, either; you know that trees don’t
grow at sea, and birds sometimes carry leaves out to sea.

We’ll return to this subject when we discuss criteria of methods.

19.1.2 Expected Value and the Method of Moments

Consider this gamble: You and another person roll a die. If it falls with the “6” upwards you
get $4, and otherwise you pay $1. If you play 120 times, at the end of the day you would
expect to have (20 * $4 - 100 * $1 =) -$20 dollars. We say that -$20 is your “expected value,”
and your expected value per roll is (-$20 / 120 =) $.166 or the loss of 1/6 of a dollar. If you
get $5 instead of $4, your expected value is $0.

This is exactly the same idea as the method of moments, and we even use the same term
— “expected value,” or “expectation” — for the outcome of a calculation of the mean of a
distribution. We say that the expected value for the success of rolling a “6” with a single cast
of a die is 1/6, and that the expected value of rolling a “6” or a “5” is (1/6 + 1/6 = ) 2/6.

19.1.3 The Maximum Likelihood Principle

Another way of thinking about estimation of the population mean asks: Which population(s)
would, among the possible populations, have the highest probability of producing the observed
sample? This criterion frequently produces the same answer as the method of moments, but
in some situations the estimates differ. Furthermore, the logic of the maximum-likelihood
principle is important.

Consider that you draw without replacement six balls — 2 black and 4 white — from a bucket
that contains twenty balls. What would you guess is the composition of the bucket from which
they were drawn? Is it likely that those balls came from a bucket with 4 white and 16 black
balls? Rather obviously not, because it would be most unusual to get all the 4 white balls
in your draw. Indeed, we can estimate the probability of that happening with simulation or
formula to be about .003.

How about a bucket with 2 black and 18 whites? The probability is much higher than with
the previous bucket, but it still is low — about .075.
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Let us now estimate the probabilities for all buckets across the range of probabilities. In
Figure 19.1 we see that the bucket with the highest probability of producing the observed
sample has the same proportions of black and white balls as does the sample. This is called
the “maximum likelihood universe.” Nor should this be very surprising, because that universe
obviously has an equal chance of producing samples with proportions below and above that
observed proportion — as was discussed in connection with the method of moments.

We should note, however, that the probability that even such a maximum-likelihood universe
would produce exactly the observed sample is very low (though it has an even lower probability
of producing any other sample).
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Figure 19.1: Number of White Balls in the Universe (N=20)

19.2 Choice of Estimation Method

When should you base your estimate on the method of moments, or of maximum likelihood,
or still some other principle? There is no general answer. Sound estimation requires that you
think long and hard about the purpose of your estimation, and fit the method to the purpose.
I am well aware that this is a very vague statement. But though it may be an uncomfortable
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idea to live with, guidance to sound statistical method must be vague because it requires sound
judgment and deep knowledge of the particular set of facts about the situation at hand.

19.3 Criteria of estimates

How should one judge the soundness of the process that produces an estimate? General criteria
include representativeness and accuracy. But these are pretty vague; we’ll have to get more
specific.

19.3.1 Unbiasedness

Concerning representativeness: We want a procedure that will not be systematically in error
in one direction or another. In technical terms, we want an “unbiased estimate,” if possible.
“Unbiased” in this case does not mean “friendly” or “unprejudiced,” but rather implies that
on the average — that is, in the long run, after taking repeated samples — estimates that
are too high will about balance (in percentage terms) those that are too low. The mean of
the universe (or the proportion, if we are speaking of two-valued “binomial situations”) is a
frequent object of our interest. And the sample mean is (in most cases) an unbiased estimate
of the population mean.

Let’s now see an informal proof that the mean of a randomlydrawn sample is an “unbiased”
estimator of the population mean. That is, the errors of the sample means will cancel out
after repeated samples because the mean of a large number of sample means approaches the
population mean. A second “law” to be informally proven is that the size of the inaccuracy of
a sample proportion is largest when the population proportion is near 50 percent, and smallest
when it approaches zero percent or 100 percent.

The statement that the sample mean is an unbiased estimate of the population mean holds
for many but not all kinds of samples — proportions of two-outcome (Democrat-Republican)
events (as in this case) and also the means of many measured-data universes (heights, speeds,
and so on) that we will come to later.

But, you object, I have only said that this is so; I haven’t proven it. Quite right. Now we will go
beyond this simple assertion, though we won’t reach the level of formal proof. This discussion
applies to conventional analytic statistical theory as well as to the resampling approach.

We want to know why the mean of a repeated sample — or the proportion, in the case of a
binomial universe — tends to equal the mean of the universe (or the proportion of a binomial
sample). Consider a population of one thousand voters. Split the population into random
sub-populations of 500 voters each; let’s call these sub-populations by the name “samples.”
Almost inevitably, the proportions voting Democratic in the samples will not exactly equal the
“true” proportions in the population. (Why not? Well, why should they split evenly? There is
no general reason why they should.) But if the sample proportions do not equal the population
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proportion, we can say that the extent of the difference between the two sample proportions
and the population proportion will be identical but in the opposite direction. If the population
proportion is 600/1000 = 60 percent, and one sample’s proportion is 340/500 = 68 percent,
then the other sample’s proportion must be (600-340 = 260)/500 = 52 percent. So if in the
very long run you would choose each of these two samples about half the time (as you would if
you selected between the two samples randomly) the average of the sample proportions would
be (68 percent + 52 percent)/2 = 60 percent. This shows that on the average the sample
proportion is a fair and unbiased estimate of the population proportion — if the sample is half
the size of the population.

If we now sub-divide each of our two samples of 500 (each of which was half the population
size) into equal-size subsamples of 250 each, the same argument will hold for the proportions
of the samples of 250 with respect to the sample of 500: The proportion of a 250-voter sample
is an unbiased estimate of the proportion of the 500-voter sample from which it is drawn. It
seems inductively reasonable, then, that if the proportion of a 250-voter sample is an unbiased
estimate of the 500-voter sample from which it is drawn, and the proportion of a 500-voter
sample is an unbiased estimate of the 1000-voter population, then the proportion of a 250-voter
sample should be an unbiased estimate of the population proportion. And if so, this argument
should hold for samples of 1/2 x 250 = 125, and so on — in fact for any size sample.

The argument given above is not a rigorous formal proof. But I doubt that the non-
mathematician needs, or will benefit from, a more formal proof of this proposition. You are
more likely to be persuaded if you demonstrate this proposition to yourself experimentally in
the following manner:

• Step 1. Let “1-6” = Democrat, “7-10” = Republican
• Step 2. Choose a sample of, say, ten random numbers, and record the proportion

Democrat (the sample proportion).
• Step 3. Repeat step 2 a thousand times.
• Step 4. Compute the mean of the sample proportions, and compare it to the population

proportion of 60 percent. This result should be close enough to reassure you that on the
average the sample proportion is an “unbiased” estimate of the population proportion,
though in any particular sample it may be substantially off in either direction.

19.3.2 Efficiency

We want an estimate to be accurate, in the sense that it is as close to the “actual” value of
the parameter as possible. Sometimes it is possible to get more accuracy at the cost of biasing
the estimate. More than that does not need to be said here.
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19.3.3 Maximum Likelihood

Knowing that a particular value is the most likely of all values may be of importance in itself.
For example, a person betting on one horse in a horse race is interested in his/her estimate
of the winner having the highest possible probability, and is not the slightest bit interested in
getting nearly the right horse. Maximum likelihood estimates are of particular interest in such
situations.

See (Savage 1972, chap. 15), for many other criteria of estimators.

19.4 Criteria of the Criteria

What should we look for in choosing criteria? Logically, this question should precede the above
list of criteria.

Savage (1972, chap. 15) has urged that we should always think in terms of the consequences of
choosing criteria, in light of our purposes in making the estimate. I believe that he is making
an important point. But it often is very hard work to think the matter through all the way to
the consequences of the criteria chosen. And in most cases, such fine inquiry is not needed, in
the sense that the estimating procedure chosen will be the same no matter what consequences
are considered.1

19.5 Estimation of accuracy of the point estimate

So far we have discussed how to make a point estimate, and criteria of good estimators. We
also are interested in estimating the accuracy of that estimate. That subject — which is harder
to grapple with — is discussed in Chapter 26 and Chapter 27 on confidence intervals.

Most important: One cannot sensibly talk about the accuracy of probabilities in the abstract,
without reference to some set of facts. In the abstract, the notion of accuracy loses any
meaning, and invites confusion and argument.

19.6 Uses of the mean

Let’s consider when the use of a device such as the mean is valuable, in the context of the
data on marksmen in Table 19.1.2. If we wish to compare marksman A versus marksman B,

1Here I shall merely mention that the method of moments and the method of maximum likelihood serve most
of our needs, and often agree in their conclusions; furthermore, we often know when the former may be
inappropriate.

2This discussion follows (Gnedenko, Aleksandr, and Khinchin 1962, chap. 8).
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we can immediately see that marksman A hit the bullseye (80 shots for 3 points each time)
as many times as marksman B hit either the bullseye or simply got in the black (30 shots
for 3 points and 50 shots for 2 points), and A hit the black (2 points) as many times as B
just got in the white (1 point). From these two comparisons covering all the shots, in both of
which comparisons A does better, it is immediately obvious that marksman A is better than
marksman B. We can say that A’s score dominates B’s score.

Table 19.1: Score percentages by marksman

Score # occurrences Probability
Marksman A
1 0 0
2 20 .2
3 80 .8
Marksman B
1 20 .2
2 50 .5
3 30 .3
Marksman C
1 10 .1
2 60 .6
3 30 .3

When we turn to comparing marksman C to marksman D, however, we cannot say that one
“dominates” the other as we could with the comparison of marksmen A and B. Therefore, we
turn to a summarizing device. One such device that is useful here is the mean. For marksman
C the mean score is (40 ∗ 1) + (10 ∗ 2) + (50 ∗ 3) = 210, while for marksman D the mean score
is (10 ∗ 1) + (60 ∗ 2) + (30 ∗ 3) = 220. Hence we can say that D is better than C even though
D’s score does not dominate C’s score in the bullseye category.

Another use of the mean (Gnedenko, Aleksandr, and Khinchin 1962, 68) is shown in the
estimation of the number of matches that we need to start fires for an operation carried out
20 times in a day (Table 19.2). Let’s say that the number of cases where s/he needs 1, 2 …
5 matches to start a fire are as follows (along with their probabilities) based on the last 100
fires started:

Table 19.2: Number of matches needed to start a fire

Number of Matches Number of Cases Probabilities
1 7 .16
2 16 .16
3 55 .55
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Number of Matches Number of Cases Probabilities
4 21 .21
5 1 .01

If you know that the operator will be lighting twenty fires, you can estimate the number of
matches that s/he will need by multiplying the mean number of matches (which turns out be
1 ∗ .07 + 2 ∗ 0.16 + 3 ∗ 0.55 + 4 ∗ 0.21 + 5 ∗ 0.01 = 2.93) in the observed experience by 20. Here
you are using the mean as an indication of a representative case.

It is common for writers to immediately produce the data in the forms of percentages or
probabilities. But I think it is important to include in our discussion the absolute numbers,
because this is what one must begin with in practice. And keeping the absolute numbers in
mind is likely to avoid some confusions that arise if one immediately goes to percentages or to
probabilities.

Still another use for the mean is when you have a set of observations with error in them.
The mean of the observations probably is your best guess about which is the “right” one.
Furthermore, the distance you are likely to be off the mark is less if you select the mean of the
observations. An example might be a series of witnesses giving the police their guesses about
the height of a man who overturned an outhouse. The mean probably is the best estimate to
give to police officers as a description of the perpetrator (though it would be helpful to give
the range of the observations as well).

We use the mean so often, in so many different circumstances, that we become used to it and
never think about its nature. So let’s do so a bit now.

Different statistical ideas are appropriate for business and engineering decisions, biometrics,
econometrics, scientific explanation (the philosophers’ case), and other fields. So nothing said
here holds everywhere and always.

One might ask: What is the “meaning” of a mean? But that is not a helpful question. Rather,
we should ask about the uses of a mean. Usually a mean is used to summarize a set of data.
As we saw with marksmen C and D, it often is difficult to look at a table of data and obtain an
overall idea of how big or how small the observations are; the mean (or other measurements)
can help. Or if you wish to compare two sets of data where the distributions of observations
overlap each other, comparing the means of the two distributions can often help you better
understand the matter.

Another complication is the confusion between description and estimation, which makes it
difficult to decide where to place the topic of descriptive statistics in a textbook. For example,
compare the mean income of all men in the U. S., as measured by the decennial census. This
mean of the universe can have a very different meaning from the mean of a sample of men
with respect to the same characteristic. The sample mean is a point estimate, a statistical
device, whereas the mean of the universe is a description. The use of the mean as an estimator
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is fraught with complications. Still, maybe it is no more complicated than deciding what
describer to use for a population. This entire matter is much more complex than it appears
at first glance.

When the sample size approaches in size the entire population — when the sample becomes
closer and closer to being the same as the population — the two issues blend. What does that
tell us? Anything? What is the relationship between a baseball player’s average for two weeks,
and his/her lifetime average? This is subtle stuff — rivaling the subtleness of arguments about
inference versus probability, and about the nature of confidence limits (see Chapter 26 and
Chapter 27 ). Maybe the only solid answer is to try to stay super-clear on what you are doing
for what purpose, and to ask continually what job you want the statistic (or describer) to do
for you.

The issue of the relationship of sample size to population size arises here. If the sample size
equals or approaches the population size, the very notion of estimation loses its meaning.

The notion of “best estimator” makes no sense in some situations, including the following:
a) You draw one black ball from a bucket. You cannot put confidence intervals around your
estimate of the proportion of black balls, except to say that the proportion is somewhere
between 1 and 0. No one would proceed without bringing in more information. That is,
when there is almost no information, you simply cannot make much of an estimate — and
the resampling method breaks down, too. It does not help much to shift the discussion to the
models of the buckets, because then the issue is the unknown population of the buckets, in
which case we need to bring in our general knowledge. b) When the sample size equals or is
close to the population size, as discussed in this section, the data are a description rather than
an estimate, because the sample is getting to be much the same as the universe; that is, if
there are twelve people in your family, and you randomly take a sample of the amount of sugar
used by eight members of the family, the results of the sample cannot be very different than
if you compute the amount for all twelve family members. In such a case, the interpretation
of the mean becomes complex.

Underlying all estimation is the assumption of continuation, which follows from random sam-
pling — that there is no reason to expect the next sample to be different from the present
one in any particular fashion, mean or variation. But we do expect it to be different in some
fashion because of sampling variability.

19.7 Conclusion

A Newsweek article says, “According to a recent reader’s survey in Bride’s magazine, the
average blowout [wedding] will set you back about $16,000” (Feb 15, 1993, p. 67). That use of
the mean (I assume) for the average, rather than the median, could cost the parents of some
brides a pretty penny. It could be that the cost for the average person — that is, the median
expenditure — might be a lot less than $16,000. (A few million dollar weddings could have
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a huge effect on a survey mean.) An inappropriate standard of comparison might enter into
some family discussions as a result of this article, and cause higher outlays than otherwise.
This chapter helps one understand the nature of such estimates.
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20 Framing Statistical Questions

20.1 Introduction

Chapter 3 - Chapter 15 discussed problems in probability theory. That is, we have been
estimating the probability of a composite event resulting from a system in which we know the
probabilities of the simple events — the “parameters” of the situation.

Then Chapter 17 - Chapter 19 discussed the underlying philosophy of statistical inference.

Now we turn to inferential-statistical problems. Up until now, we have been estimating the
complex probabilities of known universes — the topic of probability. Now as we turn to
problems in statistics, we seek to learn the characteristics of an unknown system — the basic
probabilities of its simple events and parameters. (Here we note again, however, that in the
process of dealing with them, all statistical-inferential problems eventually are converted into
problems of pure probability). To assess the characteristics of the system in such problems,
we employ the characteristics of the sample(s) that have been drawn from it.

For further discussion on the distinction between inferential statistics and probability theory,
see Chapter 2 - Chapter 3.

This chapter begins the topic of hypothesis testing. The issue is: whether to adjudge that
a particular sample (or samples) come(s) from a particular universe. A two-outcome yes-no
universe is discussed first. Then we move on to “measured-data” universes, which are more
complex than yes-no outcomes because the variables can take on many values, and because we
ask somewhat more complex questions about the relationships of the samples to the universes.
This topic is continued in subsequent chapters.

In a typical hypothesis-testing problem presented in this chapter, one sample of hospital pa-
tients is treated with a new drug and a second sample is not treated but rather given a
“placebo.” After obtaining results from the samples, the “null” or “test” or “benchmark”
hypothesis would be that the resulting drug and placebo samples are drawn from the same
universe. This device of the null hypothesis is the equivalent of stating that the drug had no
effect on the patients. It is a special intellectual strategy developed to handle such statistical
questions.

We start with the scientific question: Does the medicine have an effect? We then translate it
into a testable statistical question: How likely is it that the sample means come from the same
universe? This process of question-translation is the crucial step in hypothesis-testing and
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inferential statistics. The chapter then explains how to solve these problems using resampling
methods after you have formulated the proper statistical question.

Though the examples in the chapter mostly focus on tests of hypotheses, the procedures also
apply to confidence intervals, which will be discussed later.

20.2 Translating scientific questions into probabilistic and
statistical questions

The first step in using probability and statistics is to translate the scientific question into a
statistical question. Once you know exactly which prob-stats question you want to ask — that
is, exactly which probability you want to determine — the rest of the work is relatively easy
(though subtle). The stage at which you are most likely to make mistakes is in stating the
question you want to answer in probabilistic terms.

Though this translation is difficult, it involves no mathematics. Rather, this step requires only
hard thought. You cannot beg off by saying, “I have no brain for math!” The need is for
a brain that will do clear thinking, rather than a brain especially talented in mathematics.
A person who uses conventional methods can avoid this hard thinking by simply grabbing
the formula for some test without understanding why s/he chooses that test. But resampling
pushes you to do this thinking explicitly.

This crucial process of translating from a pre-statistical question to a statistical question takes
place in all statistical inference. But its nature comes out most sharply with respect to testing
hypotheses, so most of what will be said about it will be in that context.

20.3 The three types of questions

Let’s consider the natures of conceptual, operational, and statistical questions.

20.3.1 The Scientific Question

A study for either scientific or decision-making purposes properly begins with a general ques-
tion about the nature of the world — that is, a conceptual or theoretical question. One must
then transform this question into an operational-empirical form that one can study scientifi-
cally. Thence comes the translation into a technical-statistical question.

The scientific-conceptual-theoretical question can be an issue of theory, or a policy choice, or
the result of curiosity at large.
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Examples include: Can a bioengineer increase the chance of female calves being born? Is
copper becoming less scarce? Are the prices of liquor systematically different in states where
the liquor stores are publicly owned compared to states where they are privately owned? Does
a new formulation of pig rations lead to faster hog growth? Was the rate of unemployment
higher last month than the long-run average, or was the higher figure likely to be the result of
sampling error? What are the margins of probable error for an unemployment survey?

20.3.2 The Operational-Empirical Question

The operational-empirical question is framed in measurable quantities in a meaningful design.
Examples include: How likely is this state of affairs (say, the new pig-food formulation) to cause
an event such as was observed (say, the observed increase in hog growth)? How likely is it that
the mean unemployment rate of a sample taken from the universe of interest (say, the labor
force, with an unemployment rate of 10 percent) will be between 11 percent and 12 percent?
What is the probability of getting three girls in the first four children if the probability of a
girl is .48? How unlikely is it to get nine females out of ten calves in an experiment on your
farm? Did the price of copper fall between 1800 and the present? These questions are in the
form of empirical questions, which have already been transformed by operationalizing from
scientific-conceptual questions.

20.3.3 The Statistical Question

At this point one must decide whether the conceptual-scientific question is of the form of either
a) or b):

a. A test about whether some sample will frequently happen by chance rather than being
very surprising — a test of the “significance” of a hypothesis. Such hypothesis testing
takes the following form: How likely is a given “universe” to produce some sample like
x? This leads to interpretation about: How likely is a given universe to be the cause of
this observed sample?

b. A question about the accuracy of the estimate of a parameter of the population based
upon sample evidence (an inquiry about “confidence intervals”). This sort of question
is considered by some (but not by me) to be a question in estimation — that is, one’s
best guess about (say) the magnitude and probable error of the mean or median of a
population. This is the form of a question about confidence limits — how likely is the
mean to be between x and y?

Notice that the statistical question is framed as a question in probability.
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20.4 Illustrative translations

The best way to explain how to translate a scientific question into a statistical question is to
illustrate the process.

20.4.1 Illustration A — beliefs about smoking

Were doctors’ beliefs as of 1964 about the harmfulness of cigarette smoking (and doctors’ own
smoking behavior) affected by the social groups among whom the doctors live (Simon 1967)?
That was the theoretical question. We decided to define the doctors’ reference groups as the
states in which they live, because data about doctors and smoking were available state by
state (Modern Medicine, 1964). We could then translate this question into an operational and
testable scientific hypothesis by asking this question: Do doctors in tobacco-economy states
differ from doctors in other states in their smoking, and in their beliefs about smoking?

Which numbers would help us answer this question, and how do we interpret those numbers?
We now were ready to ask the statistical question: Do doctors in tobacco-economy states “be-
long to the same universe” (with respect to smoking) as do other doctors? That is, do doctors
in tobacco-economy states have the same characteristics — at least, those characteristics we
are interested in, smoking in this case — as do other doctors? Later we shall see that the way
to proceed is to consider the statistical hypothesis that these doctors do indeed belong to that
same universe; that hypothesis and the universe will be called “benchmark hypothesis” and
“benchmark universe” respectively — or in more conventional usage, the “null hypothesis.”

If the tobacco-economy doctors do indeed belong to the benchmark universe — that is, if the
benchmark hypothesis is correct — then there is a 49/50 chance that doctors in some state
other than the state in which tobacco is most important will have the highest rate of cigarette
smoking. But in fact we observe that the state in which tobacco accounts for the largest
proportion of the state’s income — North Carolina — had (as of 1964) a higher proportion
of doctors who smoked than any other state. (Furthermore, a lower proportion of doctors
in North Carolina than in any other state said that they believed that smoking is a health
hazard.)

Of course, it is possible that it was just chance that North Carolina doctors smoked most, but
the chance is only 1 in 50 if the benchmark hypothesis is correct. Obviously, some state had
to have the highest rate, and the chance for any other state was also 1 in 50. But, because
our original scientific hypothesis was that North Carolina doctors’ smoking rate would be
highest, and we then observed that it was highest even though the chance was only 1 in 50,
the observation became interesting and meaningful to us. It means that the chances are strong
that there was a connection between the importance of tobacco in the economy of a state and
the rate of cigarette smoking among doctors living there (as of 1964).

To consider this problem from another direction, it would be rare for North Carolina to have
the highest smoking rate for doctors if there were no special reason for it; in fact, it would
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occur only once in fifty times. But, if there were a special reason — and we hypothesize
that the tobacco economy provides the reason — then it would not seem unusual or rare for
North Carolina to have the highest rate; therefore we choose to believe in the not-so-unusual
phenomenon, that the tobacco economy caused doctors to smoke cigarettes.

Like many (most? all?) actual situations, the cigarettes and doctors’ smoking issue is a rather
messy business. Did I have a clear-cut, theoretically-derived prediction before I began? Maybe
I did a bit of “data dredging” — that is, maybe I started with a vague expectation, and only
arrived at my sharp hypothesis after I saw the data. This would weaken the probabilistic
interpretation of the test of significance — but this is something that a scientific investigator
does not like to do because it weakens his/her claim for attention and chance of publication.
On the other hand, if one were a Bayesian, one could claim that one had a prior probability
that the observed effect would occur, and the observed data strengthens that prior; but this
procedure would not seem proper to many other investigators. The only wholly satisfactory
conclusion is to obtain more data — but as of 1993, there does not seem to have been another
data set collected since 1964, and collecting a set by myself is not feasible.

This clearly is a case of statistical inference that one could argue about, though perhaps it is
true that all cases where the data are sufficiently ambiguous as to require a test of significance
are also sufficiently ambiguous that they are properly subject to argument.

For some decades the hypothetico-deductive framework was the leading point of view in em-
pirical science. It insisted that the empirical and statistical investigation should be preceded
by theory, and only propositions suggested by the theory should be tested. Investigators were
not supposed to go back and forth from data to theory to testing. It is now clear that this is
an ivory-tower irrelevance, and no one lived by the hypothetico-deductive strictures anyway
— just pretended to. Furthermore, there is no sound reason to feel constrained by it, though
it strengthens your conclusions if you had theoretical reason in advance to expect the finding
you obtained.

20.4.2 Illustration B — is it a cure?

Does medicine CCC cure some particular cancer? That’s the scientific question. So you give
the medicine to six patients who have the cancer and you do not give it to six similar patients
who have the cancer. Your sample contains only twelve people because it is not feasible for you
to obtain a larger sample. Five of six “medicine” patients get well, two of six “no medicine”
patients get well. Does the medicine cure the cancer? That is, if future cancer patients take
the medicine, will their rate of recovery be higher than if they did not take the medicine?

One way to translate the scientific question into a statistical question is to ask: Do the
“medicine” patients belong to the same universe as the “no medicine” patients? That is, we
ask whether “medicine” patients still have the same chances of getting well from the cancer as
do the “no medicine” patients, or whether the medicine has bettered the chances of those who
took it and thus removed them from the original universe, with its original chances of getting
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well. The original universe, to which the “no medicine” patients must still belong, is the bench-
mark universe. Shortly we shall see that we proceed by comparing the observed results against
the benchmark hypothesis that the “medicine” patients still belong to the benchmark universe
— that is, they still have the same chance of getting well as the “no medicine” patients.

We want to know whether or not the medicine does any good. This question is the same as
asking whether patients who take medicine are still in the same population (universe) as “no
medicine” patients, or whether they now belong to a different population in which patients
have higher chances of getting well. To recapitulate our translations, we move from asking:
Does the medicine cure the cancer? to, Do “medicine” patients have the same chance of getting
well as “no medicine” patients?; and finally, to: Do “medicine” patients belong to the same
universe (population) as “no medicine” patients? Remember that “population” in this sense
does not refer to the population at large, but rather to a group of cancer sufferers (perhaps an
infinitely large group) who have given chances of getting well, on the average. Groups with
different chances of getting well are called “different populations” (universes). Shortly we shall
see how to answer this statistical question. We must keep in mind that our ultimate concern
in cases like this one is to predict future results of the medicine, that is, to predict whether
use of the medicine will lead to a higher recovery rate than would be observed without the
medicine.

20.4.3 Illustration C — a better method for teaching reading

Is method Alpha a better method of teaching reading than method Beta? That is, will method
Alpha produce a higher average reading score in the future than will method Beta? Twenty
children taught to read with method Alpha have an average reading score of 79, whereas
children taught with method Beta have an average score of 84. To translate this scientific
question into a statistical question we ask: Do children taught with method Alpha come
from the same universe (population) as children taught with method Beta? Again, “universe”
(population) does not mean the town or social group the children come from, and indeed the
experiment will make sense only if the children do come from the same population, in that
sense of “population.” What we want to know is whether or not the children belong to the
same statistical population (universe), defined according to their reading ability, after they have
studied with method Alpha or method Beta.

20.4.4 Illustration D — better fertilizer

If one plot of ground is treated with fertilizer, and another similar plot is not treated, the
benchmark (null) hypothesis is that the corn raised on the treated plot is no different than
the corn raised on the untreated lot — that is, that the corn from the treated plot comes from
(“belongs to”) the same universe as the corn from the untreated plot. If our statistical test
makes it seem very unlikely that a universe like that from which the untreated-plot corn comes
would also produce corn such as came from the treated plot, then we are willing to believe
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that the fertilizer has an effect. For a psychological example, substitute the words “group of
children” for “plot,” “special training” for “fertilizer,” and “I.Q. score” for “corn.”

There is nothing sacred about the benchmark (null) hypothesis of “no difference.” You could
just as well test the benchmark hypothesis that the corn comes from a universe that averages
110 bushels per acre, if you have reason to be especially interested in knowing whether or not
the fertilizer produces more than 110 bushels per acre. But in many cases it is reasonable to
test the probability that a sample comes from the population that does not receive the special
treatment of medicine, fertilizer, or training.

20.5 Generalizing from sample to universe

So far we have discussed the scientific question and the statistical question. Remember that
there is always a generalization question, too: Do the statistical results from this particular
sample of, say, rats apply to a universe of humans? This question can be answered only with
wisdom, common sense, and general knowledge, and not with probability statistics.

Translating from a scientific question into a statistical question is mostly a matter of asking
the probability that some given benchmark universe (population) will produce one or more
observed samples. Notice that we must (at least for general scientific testing purposes) ask
about a given universe whose composition we assume to be known, rather than about a range
of universes, or about a universe whose properties are unknown. In fact, there is really only one
question that probability statistics can answer: Given some particular benchmark universe of
some stated composition, what is the probability that an observed sample would come from it?
(Please notice the subtle but all-important difference between the words “would come” in the
previous sentence, and the word “came.”) A variation of this question is: Given two (or more)
samples, what is the probability that they would come from the same universe — that is, that
the same universe would produce both of them? In this latter case, the relevant benchmark
universe is implicitly the universe whose composition is the two samples combined.

The necessity for stating the characteristics of the universe in question becomes obvious when
you think about it for a moment. Probability-statistical testing adds up to comparing a
sample with a particular benchmark universe, and asking whether there probably is a difference
between the sample and the universe. To carry out this comparison, we ask how likely it is
that the benchmark universe would produce a sample like the observed sample.

But in order to find out whether or not a universe could produce a given sample, we must ask
whether or not some particular universe — with stated characteristics — could produce the
sample. There is no doubt that some universe could produce the sample by a random process;
in fact, some universe did. The only sensible question, then, is whether or not a particular
universe, with stated (or known) characteristics, is likely to produce such a sample. In the
case of the medicine, the universe with which we compare the sample who took the medicine
is the benchmark universe to which that sample would belong if the medicine had had no
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effect. This comparison leads to the benchmark (null) hypothesis that the sample comes from
a population in which the medicine (or other experimental treatment) seems to have no effect.
It is to avoid confusion inherent in the term “null hypothesis” that I replace it with the term
“benchmark hypothesis.”

The concept of the benchmark (null) hypothesis is not easy to grasp. The best way to learn
its meaning is to see how it is used in practice. For example, we say we are willing to believe
that the medicine has an effect if it seems very unlikely from the number who get well that
the patients given the medicine still belong to the same benchmark universe as the patients
given no medicine at all — that is, if the benchmark hypothesis is unlikely.

20.6 The steps in statistical inference

These are the steps in conducting statistical inference

• Step 1. Frame a question in the form of: What is the chance of getting the observed
sample x from some specified population X? For example, what is the probability of
getting a sample of 9 females and one male from a population where the probability of
getting a single female is .48?

• Step 2. Reframe the question in the form of: What kinds of samples does population
X produce, with which probabilities? That is, what is the probability of the observed
sample x (9 females in 10 calves), given that a population is X (composed of 48 percent
females)? Or in notation, what is 𝑃(𝑥|𝑋)?

• Step 3. Actually investigate the behavior of S with respect to S and other samples. This
can be done in two ways:

1. Use the calculus of probability (the formulaic method), perhaps resorting to the Monte
Carlo method if an appropriate formula does not exist. Or

2. Resampling (in the larger sense), which equals the Monte Carlo method minus its use
for approximations, investigation of complex functions in statistics and other theoretical
mathematics, and non-resampling uses elsewhere in science. Resampling in the more
restricted sense includes bootstrap, permutation, and other non-parametric methods.
More about the resampling procedure follows in the paragraphs to come, and then in
later chapters in the book.

• Step 4. Interpret the probabilities that result from step 3 in terms of acceptance or
rejection of hypotheses, surety of conclusions, and as inputs to decision theory.1

The following short definition of statistical inference summarizes the previous four steps:

1These steps are discussed in more philosophic depth in my (JLS’s) online book on the philosophy of statistics
and resampling.
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Statistical inference equals the selection of a probabilistic model to resemble the
process you wish to investigate, the investigation of that model’s behavior, and the
interpretation of the results.

Stating the steps to be followed in a procedure is an operational definition of the procedure.
My belief in the clarifying power of this device (the operational definition) is embodied in the
set of steps given in Chapter 15 for the various aspects of statistical inference. A canonical
question-and-answer procedure for testing hypotheses will be found in Chapter 25, and one
for confidence intervals will be found in Chapter 26.

20.7 Summary

We define resampling to include problems in inferential statistics as well as problems in prob-
ability as follows: Using the entire set of data you have in hand, or using the given data-
generating mechanism (such as a die) that is a model of the process you wish to understand,
produce new samples of simulated data, and examine the results of those samples. That’s it in
a nutshell. In some cases, it may also be appropriate to amplify this procedure with additional
assumptions.

Problems in pure probability may at first seem different in nature than problems in statistical
inference. But the same logic as stated in this definition applies to both varieties of problems.
The difference is that in probability problems the “model” is known in advance — say, the
model implicit in a deck of poker cards plus a game’s rules for dealing and counting the results
— rather than the model being assumed to be best estimated by the observed data, as in
resampling statistics.

The hardest job in using probability statistics, and the most important, is to translate the
scientific question into a form to which statistics can give a sensible answer. You must translate
scientific questions into the appropriate form for statistical operations, so that you know which
operations to perform. This is the part of the job that requires hard, clear thinking — though
it is non-mathematical thinking — and it is the part that someone else usually cannot easily
do for you.

Once you know exactly which probability-statistical question you want to ask — that is, exactly
which probability you want to determine — the rest of the work is relatively easy. The stage
at which you are most likely to make mistakes is in stating the question you want to answer in
probabilistic terms. Though this step is hard, it involves no mathematics. This step requires
only hard, clear thinking. You cannot beg off by saying “I have no brain for math!” To
flub this step is to admit that you have no brain for clear thinking, rather than no brain for
mathematics.
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21 Hypothesis-Testing with Counted Data,
Part 1

21.1 Introduction

The first task in inferential statistics is to make one or more point estimates — that is, to make
one or more statements about how much there is of something we are interested in — including
especially the mean and the dispersion. (That work goes under the label “estimation” and is
discussed in Chapter 19.) Frequently the next step, after making such quantitative estimation
of the universe from which a sample has been drawn, is to consider whether two or more
samples are different from each other, or whether the single sample is different from a specified
value; this work goes under the label “hypothesis testing.” We ask: Did something happen?
Or: Is there a difference between two universes? These are yes-no questions.

In other cases, the next step is to inquire into the reliability of the estimates; this goes under
the label “confidence intervals.” (Some writers include assessing reliability under the rubric of
estimation, but I judge it better not to do so).

So: Having reviewed how to convert hypothesis-testing problems into statistically testable
questions in Chapter 20, we now must ask: How does one employ resampling methods to
make the statistical test? As is always the case when using resampling techniques, there is
no unique series of steps by which to proceed. The crucial criterion in assessing the model
is whether it accurately simulates the actual event. With hypothesis-testing problems, any
number of models may be correct. Generally speaking, though, the model that makes fullest
use of the quantitative information available from the data is the best model.

When attempting to deduce the characteristics of a universe from sample data, or when asking
whether a sample was drawn from a particular universe, a crucial issue is whether a “one-
tailed test” or a “two-tailed test” should be applied. That is, in examining the results of
our resampling experiment based on the benchmark universe, do we examine both ends of
the frequency distribution, or just one? If there is strong reason to believe a priori that the
difference between the benchmark (null) universe and the sample will be in a given direction
— for example if you hypothesize that the sample mean will be smaller than the mean of the
benchmark universe — you should then employ a one-tailed test. If you do not have strong
basis for such a prediction, use the two-tailed test. As an example, when a scientist tests a
new medication, his/her hypothesis would be that the number of patients who get well will be
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higher in the treated group than in the control group. Thus, s/he applies the one-tailed test.
See the text below for more detail on one- and two-tailed tests.

Some language first:

Hypothesis: In inferential statistics, a statement or claim about a universe that can be tested
and that you wish to investigate.

Testing: The process of investigating the validity of a hypothesis.

Benchmark (or null) hypothesis: A particular hypothesis chosen for convenience when
testing hypotheses in inferential statistics. For example, we could test the hypothesis that
there is no difference between a sample and a given universe, or between two samples, or that
a parameter is less than or greater than a certain value. The benchmark universe refers to this
hypothesis. (The concept of the benchmark or null hypothesis was discussed in Chapter 9 and
Chapter 20.)

Soon we will begin the actual statistical testing of various sorts of hypotheses about samples
and populations.

But, before we get there, we will take a short technical detour.

21.1.1 Building strings for labels and messages

Note 39: Notebook: Building strings for labels

• Download notebook
• Interact

As the examples in this book proceed, we will use more code techniques to write the examples
in a more concise and efficient way.

One task that we often have, is to build up helpful strings to use as labels on plots, or to print
out as messages. These strings will often mix numbers and text. For example, we may want
to print out a helpful message such as: Simulation using 10000 trials, where the number
10000 in the message comes from some variable, such as n_trials. Let’s set that variable
now:

n_trials = 10000

Building the useful string above would involve taking the string 'Simulation using ', then
appending a string to represent the number 10,000 — as in:
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# Convert the number (integer) to a string representing the number.
str(n_trials)

'10000'

Finally we need to append another string to the result — ' trials.'. So our task will be to
concatenate (stick together) these three strings.

There are several ways to concatenate strings in Python. For example, Python interprets +,
between strings, to mean concatenate. One way to make a new string that concatenates the
strings 'resampling ', 'is ' and 'better' is to use +, like this:

# + between strings means "concatenate".
'resampling ' + 'is ' + 'better'

'resampling is better'

We could always insert a number as a string, by converting the number to a string, and
concatenating, like this:

'resampling ' + 'is ' + str(100) + ' times ' + 'better'

'resampling is 100 times better'

However, as you can see, this starts looking rather ugly and verbose. It’s easy to forget to
append spaces to the strings to concatenate, and end up with messages like:

'resampling' + 'is' + str(100) + 'times' + 'better'

'resamplingis100timesbetter'

One of the most flexible ways to solve problems like this, is to use Python “f” (Format) strings.
Format strings start with an f and can include values inside the string, enclosed in curly
brackets. This is best explained by example:

# Our first Python format string.
# Notice the "f" prefix before the quotes, to tell Python this is a Format
# string, and may include values to interpolate, inside curly brackets.
f'resampling is {100} times better'
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'resampling is 100 times better'

The Format string expects Python values to appear inside the string, enclosed in curly brackets.
When Python see a Format (“f” string) like this, it gets the value named or typed inside the
curly brackets, converts it to a string, and inserts that string into the result at the relevant
place.

Format strings take a little getting used to, but once you are used to them, they are a flexible
and concise way of assembling useful messages.

For example, to create the string we started this section with, we could write:

f'Simulation using {n_trials} trials.'

'Simulation using 10000 trials.'

Don’t forget the f prefix to the string, if you do want to insert values like this, otherwise you’ll
get a standard (not-Format) string, and Python won’t insert the value.

# Oops! We forgot the "f" prefix to the string. Python won't put in
# (interpolate) the string representation of the value.
'Simulation using {n_trials} trials.'

'Simulation using {n_trials} trials.'

End of notebook: Building strings for labels

building_strings starts at Note 39.

Now we begin with statistical testing for hypotheses on samples and populations.

21.2 Should a single sample of counted data be considered
different from a benchmark universe?

21.2.1 Example: Does irradiation affect the sex ratio in fruit flies?

Where the Benchmark Universe Mean (in this case, the Proportion) is Known, is
the Mean (Proportion) of the Population Affected by the Treatment?)
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You think you have developed a technique for irradiating the genes of fruit flies so that the
sex ratio of the offspring will not be half males and half females. In the first twenty cases you
treat, there are fourteen males and six females. Does this experimental result confirm that the
irradiation does work?

First convert the scientific question — whether or not the treatment affects the sex distribution
— into a probability-statistical question: Is the observed sample likely to have come from a
benchmark universe in which the sex ratio is one male to one female? The benchmark (null)
hypothesis, then, is that the treatment makes no difference and the sample comes from the
one-male-to-one-female universe. Therefore, we investigate how likely a one-to-one universe is
to produce a distribution of fourteen or more of just one sex.

A coin has a one-to-one (one out of two) chance of coming up tails. Therefore, we might flip
a coin in groups of twenty flips, and count the number of tails in each twenty flips. Or we can
use a random number table. The following steps will produce a sound estimate:

• Step 1. Let tails = male, heads = female.
• Step 2. Flip twenty coins and count the number of males. If 14 or more males occur,

record “yes.” Also, if 6 or fewer males occur, record “yes” because this means we have
gotten 14 or more females. Otherwise, record “no.”

• Step 3. Repeat step 2 perhaps 100 times.
• Step 4. Calculate the proportion “yes” in the 100 trials. This proportion estimates the

probability that a fruit-fly population with a propensity to produce 50 percent males
will by chance produce as many as 14 or as few as 6 males in a sample of 20 flies.

Table 21.1: Results from 25 random trials for Fruitfly problem

Trial no # of tails >=14 or <=6
1 12 No
2 12 No
3 8 No
4 11 No
5 8 No
6 10 No
7 11 No
8 6 Yes
9 6 Yes
10 10 No
11 11 No
12 12 No
13 7 No
14 15 Yes
15 13 No
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Trial no # of tails >=14 or <=6
16 9 No
17 9 No
18 10 No
19 10 No
20 9 No
21 12 No
22 11 No
23 4 Yes
24 16 Yes
25 7 No

Table 21.1 shows the results obtained in 25 trials of twenty flips each. In two of the twenty-five
trials (8 percent) there were fourteen or more tails, which we call “males,” and in three of
the 25 trials (12 percent) there six or fewer tails, meaning there were fourteen or more heads
(“females”). We can therefore estimate that, even if the treatment does not affect the sex and
the births over a long period really are one to one, five out of twenty-five times (20 percent)
we would get fourteen or more of one sex or the other. Therefore, finding fourteen males out
of 20 births is not overwhelming evidence that the treatment has any effect, even though the
result is suggestive.

How accurate is the estimate? Seventy-five more trials were made, and of the 100 trials
nine contained fourteen or more “males” (9 percent), and 8 trials contained fourteen or more
“females” (8 percent), a total of 17 percent. So the first twenty-five trials gave a fairly reliable
indication. As a matter of fact, analytically-based computation (not explained here) shows
that the probability of getting fourteen or more females out of twenty births is .057 and, of
course, the same for fourteen or more males from a one-to-one universe, implying a total
probability of .114 of getting fourteen or more males or females.

Now let us obtain larger and more accurate simulation samples with the computer. The key
step in the Python notebook below represents male fruit flies with the string 'male' and
female fruit flies with the string 'female'. The rnd.choice function is then used to generate
20 of these strings with an equal probability that either string is selected. This simulates
randomly choosing 20 fruit flies on the benchmark assumption — the “null hypothesis” —
that each fruit fly has an equal chance of being a male or female. Now we want to discover the
chances of getting more than 13 (i.e., 14 or more) males or more than 13 females under these
conditions. So we use np.sum to count the number of males in each random sample and then
store this value in the scores array of this number for each sample. We repeat these steps
10,000 times.

After ten thousand samples have been drawn, we count (sum) how often there were more than
13 males and then count the number of times there were fewer than 7 males (because if there
were fewer than 7 males there must have been more than 13 females). When we add the two
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results together we have the probability that the results obtained from the sample of irradiated
fruit flies would be obtained from a random sample of fruit flies.

Note 40: Notebook: Fruit fly simulation

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

# set up the random number generator
rnd = np.random.default_rng()

# Set the number of trials
n_trials = 10000

# set the sample size for each trial
sample_size = 20

# An empty array to store the trials
scores = np.zeros(n_trials)

# Do 10000 trials
for i in range(n_trials):

# Generate 20 simulated fruit flies, where each has an equal chance of
# being male or female
a = rnd.choice(['male', 'female'],

size=sample_size,
p=[0.5, 0.5],
replace = True)

# count the number of males in the sample
b = np.sum(a == 'male')

# store the result of this trial
scores[i] = b

# Produce a histogram of the trial results
plt.title(f"Number of males in {n_trials} samples of \n{sample_size} simulated fruit flies")
plt.hist(scores)
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plt.xlabel('Number of Males')
plt.ylabel('Frequency')
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In the histogram above, we see that in about 12 percent of the trials, the number of males
was 14 or more, or 6 or fewer. Or instead of reading the results from the histogram, we can
calculate the result by tacking on the following commands to the above program:

# Determine the number of trials in which we had 14 or more males.
j = np.sum(scores >= 14)

# Determine the number of trials in which we had 6 or fewer males.
k = np.sum(scores <= 6)

# Add the two results together.
m = j + k

# Convert to a proportion.
mm = m / n_trials

# Print the results.
print(mm)

0.1191
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End of notebook: Fruit fly simulation

fruit_fly starts at Note 40.

Notice that the strength of the evidence for the effectiveness of the radiation treatment depends
upon the original question: whether or not the treatment had any effect on the sex of the fruit
fly, which is a two-tailed question. If there were reason to believe at the start that the treatment
could increase only the number of males, then we would focus our attention on the result that
in only two of the twenty-five trials were fourteen or more males. There would then be only a
2/25 = 0.08 probability of getting the observed results by chance if the treatment really has
no effect, rather than the weaker odds against obtaining fourteen or more of either males or
females.

Therefore, whether you decide to figure the odds of just fourteen or more males (what is called
a “one-tail test”) or the odds for fourteen or more males plus fourteen or more females (a “two-
tail test”), depends upon your advance knowledge of the subject. If you have no reason to
believe that the treatment will have an effect only in the direction of creating more males and
if you figure the odds for the one-tail test anyway, then you will be kidding yourself. Theory
comes to bear here. If you have a strong hypothesis, deduced from a strong theory, that there
will be more males, then you should figure one-tail odds, but if you have no such theory you
should figure the weaker two-tail odds.1

In the case of the next problem concerning calves, we shall see that a one-tail test is appropriate
because we have no interest in producing more male calves. Before leaving this example, let
us review our intellectual strategy in handling the problem. First we observe a result (14
males in 20 flies) which differs from the proportion of the benchmark population (50 percent
males). Because we have treated this sample with irradiation and observed a result that differs
from the untreated benchmark-population’s mean, we speculate that the irradiation caused the
sample to differ from the untreated population. We wish to check on whether this speculation
is correct.

When asking whether this speculation is correct, we are implicitly asking whether future
irradiation would also produce a proportion of males higher than 50 percent. That is, we are
implicitly asking whether irradiated flies would produce more samples with male proportions
as high as 14/20 than would occur by chance in the absence of irradiation.

If samples as far away as 14/20 from the benchmark population mean of 10/20 would occur
frequently by chance, then we would not be impressed with that experimental evidence as
proof that irradiation does affect the sex ratio. Hence we set up a model that will tell us
the frequency with which samples of 14 or more males out of 20 births would be observed by
chance. Carrying out the resampling procedure tells us that perhaps a tenth of the time such
samples would be observed by chance. That is not extremely frequent, but it is not infrequent

1If you are very knowledgeable, you may do some in-between figuring (with what is known as “Bayesian
analysis”), but leave this alone unless you know well what you are doing.
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either. Hence we would probably conclude that the evidence is provocative enough to justify
further experimentation, but not so strong that we should immediately believe in the truth of
this speculation.

The logic of attaching meaning to the probabilistic outcome of a test of a hypothesis is discussed
in Chapter 22. There also is more about the concept of the level of significance in Chapter 22.

Because of the great importance of this sort of case, which brings out the basic principles
particularly clearly, let us consider another example:

21.2.2 Example: Does a treatment increase the female calf rate?

What is the probability that among 10 calves born, 9 or more will be female?

Let’s consider this question in the context of a set of queries for performing statistical inference
that will be discussed further in Chapter 25.

The question: (From Hodges Jr and Lehmann (1970)): Female calves are more valuable
than males. A bio-engineer claims to be able to cause more females to be born than the
expected 50 percent rate. He conducts his procedure, and nine females are born out of the
next 10 pregnancies among the treated cows. Should you believe his claim? That is, what is
the probability of a result this (or more) surprising occurring by chance if his procedure has
no effect? In this problem, we assume that on average 100 of 206 births are female, in contrast
to the 50-50 benchmark universe in the previous problem.

What is the purpose of the work?: Female calves are more valuable than male calves.

Statistical inference?: Yes.

Confidence interval or Test of hypothesis?: Test of hypothesis.

Will you state the costs and benefits of various outcomes, or a loss function?: Yes.
One need only say that the benefits are very large, and if the results are promising, it is worth
gathering more data to confirm results.

How many samples of data are part of the hypothesis test?: One.

What is the size of the first sample about which you wish to make significance
statements?: Ten.

What comparison(s) to make?: Compare the sample to the benchmark universe.

What is the benchmark universe: that embodies the null hypothesis? 100/206
female.

Which symbols for the observed entities?: Balls in bucket, or numbers.
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What values or ranges of values?: We could write numbers 1 through 206 on pieces of
paper, and take numbers 1-100 as “male” and 101-206 as “female”. Or we could use some
other mechanism to give us a 100/206 chance of any one calf being female.

Finite or infinite universe?: Infinite.

Which sample(s) do you wish to compare to which, or to the null universe (and
perhaps to the alternative universe)?: Ten calves.

What procedure to produce the sample entities?: Sampling with replacement.

Simple (single step) or complex (multiple “if” drawings)?: Can think of it either
way.

What to record as the outcome of each resample trial?: The proportion (or number)
of females.

What is the criterion to be used in the test?: The probability that in a sample of ten
calves, nine (or more) females would be drawn by chance from the benchmark universe of
100/206 females.

“One tail” or “two tail” test?: One tail, because the farmer is only interested in females.
Finding a large proportion of males would not be of interest; it would not cause rejecting the
null hypothesis.

The actual computation of probability may be done in several ways, as discussed earlier for four
children and for ten cows. Conventional methods are discussed for comparison in Chapter 25.
Here is the resampling solution in Python.

Note 41: Notebook: Female calf numbers simulation

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Set the number of trials.
n_trials = 10000

# Set the size of each sample.
sample_size = 10

# Probability of any one calf being female.
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p_female = 100 / 206

# An array to store the results.
scores = np.zeros(n_trials)

# For 10000 repeats.
for i in range(n_trials):

a = rnd.choice(['female', 'male'],
p=[p_female, 1 - p_female],
size=sample_size)

b = np.sum(a == 'female')

# Store the result of the current trial.
scores[i] = b

# Plot a histogram of the scores.
plt.title(f"Number of females in {n_trials} samples of \n{sample_size} simulated calves")
plt.hist(scores)
plt.xlabel('Number of Females')
plt.ylabel('Frequency')

# Count the number of scores that were greater than or equal to 9.
k = np.sum(scores >= 9)

# Express as a proportion.
kk = k / n_trials

# Show the proportion.
print("Probability of 9 or 10 females occurring by chance:", kk)

Probability of 9 or 10 females occurring by chance: 0.009
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We read from the result in variable kk that the probability of 9 or 10 females occurring by
chance is a bit more than one percent.

End of notebook: Female calf numbers simulation

female_calves starts at Note 41.

21.2.3 Example: A public-opinion poll

Is the Proportion of a Population Greater Than a Given Value?

A municipal official wants to determine whether a majority of the town’s residents are for or
against the awarding of a high-speed internet contract, and she asks you to take a poll. You
judge that the voter registration records are a fair representation of the universe in which
the politician was interested, and you therefore decided to interview a random selection of
registered voters. Of a sample of fifty people who expressed opinions, thirty said “yes” they
were for the plan and twenty said “no,” they were against it. How conclusively do the results
show that the people in town want this internet contract?

Now comes some necessary subtle thinking in the interpretation of what seems like a simple
problem. Notice that our aim in the analysis is to avoid the mistake of saying that the town
favors the plan when in fact it does not favor the plan. Our chance of making this mistake
is greatest when the voters are evenly split, so we choose as the benchmark (null) hypothesis
that 50 percent of the town does not want the plan. This statement really means that “50
percent or more do not want the plan.” We could assess the probability of obtaining our result
from a population that is split (say) 52-48 against, but such a probability would necessarily be
even smaller, and we are primarily interested in assessing the maximum probability of being
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wrong. If the maximum probability of error turns out to be inconsequential, then we need not
worry about less likely errors.

This problem is very much like the one-group fruit fly irradiation problem above. The only
difference is that now we are comparing the observed sample against an arbitrary value of 50
percent (because that is the break-point in a situation where the majority decides) whereas
in Section 21.2.1 we compared the observed sample against the normal population proportion
(also 50 percent, because that is the normal proportion of males). But it really does not matter
why we are comparing the observed sample to the figure of 50 percent; the procedure is the
same in both cases. (Please notice that there is nothing special about the 50 percent figure;
the same procedure would be followed for 20 percent or 85 percent.)

In brief, we a) take two pieces of paper, write “Yes” on one and “No” on the other, put them
in a bucket b) draw a piece of paper from the bucket, record whether it was “Yes” or “No”,
replace, and repeat 50 times c) count the number of “yeses” and “noes” in the fifty draws, c)
repeat for perhaps a hundred trials, then d) count the proportion of the trials in which a 50-50
universe would produce thirty or more “yes” answers.

In operational steps, the procedure is as follows:

• Step 1. “1-5” = no, “6-0” = yes.
• Step 2. In 50 random numbers, count the “yeses,” and record “false positive” if 30 or

more “yeses.”
• Step 3. Repeat step 2 perhaps 100 times.
• Step 4. Calculate the proportion of experimental trials showing “false positive.” This

estimates the probability that as many as 30 “yeses” would be observed by chance in a
sample of 50 people if half (or more) are really against the plan.

Table 21.2: Results from 20 random trials for contract poll problem

Trial no # of “Noes” # of “Yeses” >= 30 “Yeses”
1 25 25
2 23 27
3 18 32 +
4 33 17
5 32 18
6 23 27
7 28 22
8 28 22
9 22 28

10 30 20
11 22 28
12 28 22
13 26 24
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Trial no # of “Noes” # of “Yeses” >= 30 “Yeses”
14 20 30 +
15 27 23
16 19 31 +
17 26 24
18 27 23
19 20 30 +
20 24 26

In Table 21.2, we see the results of twenty trials; 4 of 20 times (20 percent), 30 or more “yeses”
were observed by chance. So our “significance level” or “probability value” is 20 percent, which
is normally too high to feel confident that our poll results are reliable. This is the probability
that as many as thirty of fifty people would say “yes” by chance if the population were “really”
split evenly. (If the population were split so that more than 50 percent were against the plan,
the probability would be even less that the observed results would occur by chance. In this
sense, the benchmark hypothesis is conservative). On the other hand, if we had been counting
the number of times there are 30 or more “No” votes that, in our setup, have the same odds
as to 30 or more “Yes” votes, there would have been three. This indicates how samples can
vary just by chance.

Taken together, the evidence suggests that the official would be wise not to place very much
confidence in the poll results, but rather ought to act with caution or else take a larger sample
of voters.

Note 42: Notebook: Contract poll simulation

• Download notebook
• Interact

This Python notebook generates samples of 50 simulated voters on the assumption that only
50 percent are in favor of the contract. Then it counts (sums) the number of samples where
over 29 (30 or more) of the 50 respondents said they were in favor of the contract. (That is, we
use a “one-tailed test.”) The result in the kk variable is the chance of a “false positive,” that
is, 30 or more people saying they favor a contract when support for the proposal is actually
split evenly down the middle.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()
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# We will do 10,000 iterations.
n = 10_000

Note 43: Underscores in Python integers

Notice the line above: n = 10_000. This is an alternative way of writing the familiar
n = 10000. Python allows underscores among the digits when we type an integer — it
will treat them as decoration, and ignore them in resolving the number we intend. This
means that all these are equivalent to Python:

10000

10000

10_000

10000

or even:

1_00_00

10000

For the same reason, we could also write 1000 as:

1_000

1000

The underscores make no difference to the resulting number in Python; it is up to us
whether we use them. They can make it easier for us humans to read the value.

# Make an array of integers to store the "Yes" counts.
yeses = np.zeros(n, dtype=int)

for i in range(n):
answers = rnd.choice(['No', 'Yes'], size=50)
yeses[i] = np.sum(answers == 'Yes')

# Produce a histogram of the trial results.
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# Use integer bins for histogram, from 10 through 40.
plt.hist(yeses, bins=range(10, 41))
plt.title('Number of yes votes out of 50, in null universe')
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In the histogram above, we see that about 11 percent of our trials had 30 or more voters in
favor, despite the fact that they were drawn from a population that was split 50-50. Python
will calculate this proportion directly if we add the following commands to the above:

k = np.sum(yeses >= 30)
kk = k / n
print('Proportion >= 30:', np.round(kk, 2))

Proportion >= 30: 0.1

End of notebook: Contract poll simulation

contract_poll starts at Note 42.

The section above discusses testing hypotheses about a single sample of counted data relative
to a benchmark universe. This section discusses the issue of whether two samples with counted
data should be considered the same or different.
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21.2.4 Example: Did the Trump-Clinton poll indicate that Trump would win?

Note 44: Notebook: Trump/Clinton poll simulation

• Download notebook
• Interact

What is the probability that a sample outcome such as actually observed (840 Trump, 660
Clinton) would occur by chance if Clinton is “really” ahead — that is, if Clinton has 50 percent
(or more) of the support? To restate in sharper statistical language: What is the probability
that the observed sample or one even more favorable to Trump would occur if the universe
has a mean of 50 percent or below?

Here is a procedure that responds to that question:

1. Create a benchmark universe with one ball marked “Trump” and another marked “Clin-
ton”

2. Draw a ball, record its marking, and replace. (We sample with replacement to simulate
the practically-infinite population of U. S. voters.)

3. Repeat step 2 1500 times and count the number of “Trump”s. If 840 or greater, record
“Y”; otherwise, record “N.”

4. Repeat steps 3 and 4 perhaps 1000 or 10,000 times, and count the number of “Y”s. The
outcome estimates the probability that 840 or more Trump choices would occur if the
universe is “really” half or more in favor of Clinton.

Before we come to the simulation, we need some new code to tune our histograms (see Sec-
tion 12.15.2). We are going to set the bins for the histogram using advanced ranges.

Note 45: Advanced ranges

So far (Section 5.9) we have used np.arange to make regular sequences of integers. For
example, to make an array of the sequential integers from 3 through 12, we could use:

np.arange(3, 13)

array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

Sometimes we want to be able to specify a step size — the gap between the numbers in
the sequence. In the sequence above, the gap (step) between each number is 1. We might
want some other step size. To create a sequence of integers from 3 through 33 in steps
of 5, we could write:

np.arange(3, 34, step=5)
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array([ 3, 8, 13, 18, 23, 28, 33])

Read this as “give me the sequence (range) of numbers, starting at 3, up to but not
including 34, in steps of 5.
So far we have used integers as the start, stop and step values, but we could also use
floating point values. For example, to get a sequence of values starting at 0.1 up to and
including 0.9, in steps of 0.2:

np.arange(0.1, 1, step=0.2)

array([0.1, 0.3, 0.5, 0.7, 0.9])

With that background, we can proceed with the Python implementation of the simulation
procedure.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Number of repeats we will run.
n = 10_000

# Make an integer array to store the counts.
trumps = np.zeros(n, dtype=int)

for i in range(n):
votes = rnd.choice(['Trump', 'Clinton'], size=1500)
trumps[i] = np.sum(votes == 'Trump')

# Integer bins from 670 through 830 in steps of 5.
plt.hist(trumps, bins=range(670, 831, 5))
plt.title('Number of Trump voters of 1500 in null-world simulation')

# How often >= 840 Trump votes in random draw?
k = np.sum(trumps >= 840)
# As a proportion of simulated resamples.
kk = k / n

print('Proportion voting for Trump:', kk)

Proportion voting for Trump: 0.0
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The value for kk is our estimate of the probability that Trump’s “victory” in the sample would
occur by chance if he really were behind. In this case, our probability estimate is less than 1
in 10,000 (< 0.0001).

End of notebook: Trump/Clinton poll simulation

trump_clinton starts at Note 44.

21.2.5 Example: Comparison of possible cancer cure to placebo

Do Two Binomial Populations Differ in Their Proportions.

Section 21.2.1 used an observed sample of male and female fruitflies to test the benchmark
(null) hypothesis that the flies came from a universe with a one-to-one sex ratio, and the poll
data problem also compared results to a 50-50 hypothesis. The calves problem also compared
the results to a single benchmark universe — a proportion of 100/206 females. Now we want to
compare two samples with each other, rather than comparing one sample with a hypothesized
universe. That is, in this example we are not comparing one sample to a benchmark universe,
but rather asking whether both samples come from the same universe. The universe from which
both samples come, if both belong to the same universe, may be thought of as the benchmark
universe, in this case.

The scientific question is whether pill P cures a rare cancer. A researcher gave pill P to six
patients selected randomly from a group of twelve cancer patients; of the six, five got well. He
gave an inactive placebo to the other six patients, and two of them got well. Does the evidence
justify a conclusion that the pill has a curative effect?
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(An identical statistical example would serve for an experiment on methods of teaching reading
to children. In such a situation the researcher would respond to inconclusive results by running
the experiment on more subjects, but in cases like the cancer-pill example the researcher often
cannot obtain more subjects.)

We can answer the stated question by combining the two samples and testing both samples
against the resulting combined universe. In this case, the universe is twelve subjects, seven (5
+ 2) of whom got well. How likely would such a universe produce two samples as far apart as
five of six, and two of six, patients who get well? In other words, how often will two samples
of six subjects, each drawn from a universe in which 7/12 of the patients get well, be as far
apart as 5 - 2 = 3 patients in favor of the sample designated “pill”? This is obviously a one-tail
test, for we have no reason to believe that the pill group might do less well than the placebo
group.

We might construct a twelve-sided die, seven of whose sides are marked “get well.” Or put 12
pieces of paper in a bucket, seven with “get well” and five with “not well”. Or we would use
pairs of numbers from the random-number table, with numbers “01-07” corresponding to get
well, numbers “08-12” corresponding to “not get well,” and all other numbers omitted. (If you
wish to save time, you can work out a system that uses more numbers and skips fewer, but
that is up to you.) Designate the first six subjects “pill” and the next six subjects “placebo.”

The specific procedure might be as follows:

• Step 1. Write “get well” on seven pieces of paper, “not well” on another five. Put the
12 pieces of paper into a bucket.

• Step 2. Select two groups, “pill” and “placebo”, each with six random draws (with
replacement) from the 12 pieces of paper.

• Step 3. Record how many “get well” in each group.
• Step 4. Subtract the result in group “placebo” from that in group “pill” (the difference

may be negative).
• Step 5. Repeat steps 1-4 perhaps 100 times.
• Step 6. Compute the proportion of trials in which the pill does better by three or more

cases.

Table 21.3: Results from 25 random trials for pill/placebo

Trial no # of pill cures # of placebo cures Difference
1 2 3 -1
2 4 3 1
3 5 2 3
4 3 3 0
5 5 2 3
6 4 4 0
7 3 3 0
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Trial no # of pill cures # of placebo cures Difference
8 3 3 0
9 3 3 0

10 4 5 -1
11 4 5 -1
12 3 4 -1
13 0 3 -3
14 5 4 1
15 3 3 0
16 5 3 2
17 5 1 4
18 3 4 -1
19 4 2 2
20 2 4 -2
21 2 6 -4
22 5 5 0
23 4 5 -1
24 3 3 0
25 4 5 -1

In the trials shown in Table 21.3, in three cases (12 percent) the difference between the
randomly-drawn groups is three cases or greater. Apparently it is somewhat unusual — it
happens 12 percent of the time — for this universe to generate “pill” samples in which the
number of recoveries exceeds the number in the “placebo” samples by three or more. Therefore
the answer to the scientific question, based on these samples, is that there is some reason to
think that the medicine does have a favorable effect. But the investigator might sensibly await
more data before reaching a firm conclusion about the pill’s efficiency, given the 12 percent
probability.

Note 46: Notebook: Cures for pill vs placebo

• Download notebook
• Interact

Now for a Python solution. Again, the benchmark hypothesis is that pill P has no effect, and
we ask how often, on this assumption, the results that were obtained from the actual test of
the pill would occur by chance.

Given that in the test 7 of 12 patients overall got well, the benchmark hypothesis assumes
7/12 to be the chances of any random patient being cured. We generate two similar samples
of 6 patients, both taken from the same universe composed of the combined samples — the
bootstrap procedure. We count (sum) the number who are “get well” in each sample. Then we
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subtract the number who got well in the “pill” sample from the number who got well in the “no-
pill” sample. We record the resulting difference for each trial in the variable pill_betters.

In the actual test, 3 more patients got well in the sample given the pill than in the sample
given the placebo. We therefore count how many of the trials yield results where the difference
between the sample given the pill and the sample not given the pill was greater than 2 (equal
to or greater than 3). This result is the probability that the results derived from the actual
test would be obtained from random samples drawn from a population which has a constant
cure rate, pill or no pill.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# The bucket with the pieces of paper.
options = np.repeat(['get well', 'not well'], [7, 5])

n = 10_000

pill_betters = np.zeros(n, dtype=int)

for i in range(n):
pill = rnd.choice(options, size=6)
pill_cures = np.sum(pill == 'get well')
placebo = rnd.choice(options, size=6)
placebo_cures = np.sum(placebo == 'get well')
pill_betters[i] = pill_cures - placebo_cures

plt.hist(pill_betters, bins=range(-6, 7))
plt.title('Number of extra cures pill vs placebo in null universe')
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Recall our actual observed results: In the medicine group, three more patients were cured
than in the placebo group. From the histogram, we see that in only about 8 percent of the
simulated trials did the “medicine” group do as well or better. The results seem to suggest —
but by no means conclusively — that the medicine’s performance is not due to chance. Further
study would probably be warranted. The following commands added to the above program
will calculate this proportion directly:

# How many trials gave an advantage of 3 or greater to the pill?
k = np.sum(pill_betters >= 3)
# Convert to a proportion.
kk = k / n
# Print the result.
print('Proportion with advantage of 3 or more for pill:',

np.round(kk, 2))

Proportion with advantage of 3 or more for pill: 0.07

End of notebook: Cures for pill vs placebo

pill_placebo starts at Note 46.

As I (JLS) wrote when I first proposed this bootstrap method in 1969, this method is not
the standard way of handling the problem; it is not even analogous to the standard analytic
difference-of-proportions method (though since then it has become widely accepted). Though
the method shown is quite direct and satisfactory, there are also many other resampling
methods that one might construct to solve the same problem. By all means, invent your own
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statistics rather than simply trying to copy the methods described here; the examples given
here only illustrate the process of inventing statistics rather than offering solutions for all
classes of problems.

21.2.6 Example: Did attitudes about marijuana change?

Consider two polls, each asking 1500 Americans about marijuana legalization. One poll, taken
in 1980, found 52 percent of respondents in favor of decriminalization; the other, taken in 1985,
found 46 percent in favor of decriminalization (Wonnacott and Wonnacott 1990, 275). Our
null (benchmark) hypothesis is that both samples came from the same universe (the universe
made up of the total of the two sets of observations). If so, let us then ask how likely would be
two polls to produce results as different as were observed? Hence we construct a universe with
a mean of 49 percent (the mean of the two polls of 52 percent and 46 percent), and repeatedly
draw pairs of samples of size 1500 from it.

To see how the construction of the appropriate question is much more challenging intellectually
than is the actual mathematics, let us consider another possibility suggested by a student:
What about considering the universe to be the earlier poll with a mean of 52 percent, and
then asking the probability that the later poll of 1500 people with a mean of 46 percent would
come from it? Indeed, on first thought that procedure seems reasonable.

Upon reflection — and it takes considerable thought on these matters to get them right —
that would not be an appropriate procedure. The student’s suggested procedure would be the
same as assuming that we had long-run solid knowledge of the universe, as if based on millions
of observations, and then asking about the probability of a particular sample drawn from it.
That does not correspond to the facts.

The only way to find the approach you eventually consider best — and there is no guarantee
that it is indeed correct — is by close reference to the particular facts of the case.

21.2.7 Example: Infarction and cholesterol: Framingham study

It is so important to understand the logic of hypothesis tests, and of the resampling method
of doing them, that we will now tackle another problem similar to the preceding one.

This will be the first of several problems that use data from the famous Framingham study
(drawn from Kahn and Sempos (1989)) concerning the development of myocardial infarction 16
years after the Framingham study began, for men ages 35- 44 with serum cholesterol above 250,
compared to those with serum cholesterol below 250. The raw data are shown in Table 21.4.
The data are from (Shurtleff 1970), cited in (Kahn and Sempos 1989, 12:61, Table 3-8). Kahn
and Sempos divided the cases into “high” and “low” cholesterol.
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Table 21.4: Development of Myocardial Infarction in Men Aged 35-44 After 16 Years

Serum Cholesterol Developed MI Didn’t Develop MI Total
> 250 10 125 135
<= 250 21 449 470

The statistical logic properly begins by asking: How likely is that the two observed groups
“really” came from the same “population” with respect to infarction rates? That is, we start
with this question: How sure should one be that there is a difference in myocardial infarction
rates between the high and low-cholesterol groups? Operationally, we address this issue by
asking how likely it is that two groups as different in disease rates as the observed groups
would be produced by the same “statistical universe.”

Key step: We assume that the relevant “benchmark” or “null hypothesis” population (uni-
verse) is the composite of the two observed groups. That is, if there were no “true” difference
in infarction rates between the two serum-cholesterol groups, and the observed disease differ-
ences occurred just because of sampling variation, the most reasonable representation of the
population from which they came is the composite of the two observed groups.

Therefore, we compose a hypothetical “benchmark” universe containing (135 + 470 =) 605
men at risk, and designate (10 + 21 =) 31 of them as infarction cases. We want to determine
how likely it is that a universe like this one would produce — just by chance — two groups that
differ as much as do the actually observed groups. That is, how often would random sampling
from this universe produce one sub-sample of 135 men containing a large enough number of
infarctions, and the other sub-sample of 470 men producing few enough infarctions, that the
difference in occurrence rates would be as high as the observed difference of .029? (10/135 =
.074, and 21/470 = .045, and .074 - .045 = .029).

So far, everything that has been said applies both to the conventional formulaic method and
to the “new statistics” resampling method. But the logic is seldom explained to the reader of
a piece of research — if indeed the researcher her/ himself grasps what the formula is doing.
And if one just grabs for a formula with a prayer that it is the right one, one need never
analyze the statistical logic of the problem at hand.

Now we tackle this problem with a method that you would think of yourself if you began
with the following mind-set: How can I simulate the mechanism whose operation I wish to
understand? These steps will do the job:

• Step 1: Fill a bucket with 605 balls, 31 red (infarction) and the rest (605 — 31 = 574)
green (no infarction).

• Step 2: Draw a sample of 135 (simulating the high serum-cholesterol group), one ball
at a time and throwing it back after it is drawn to keep the simulated probability of
an infarction the same throughout the sample; record the number of reds. Then do the
same with another sample of 470 (the low serum-cholesterol group).
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• Step 3: Calculate the difference in infarction rates for the two simulated groups, and
compare it to the actual difference of .029; if the simulated difference is that large, record
“Yes” for this trial; if not, record “No.”

• Step 4: Repeat steps 2 and 3 until a total of (say) 400 or 1000 trials have been completed.
Compute the frequency with which the simulated groups produce a difference as great
as actually observed. This frequency is an estimate of the probability that a difference
as great as actually observed in Framingham would occur even if serum cholesterol has
no effect upon myocardial infarction.

The procedure above can be carried out with balls in a bucket in a few hours. Yet it is natural
to seek the added convenience of the computer to draw the samples. Here is the Python
program:

Note 47: Notebook: Framingham heart data

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

n = 10_000
men = np.repeat(['infarction', 'no infarction'], [31, 574])

n_high = 135 # Number of men with high cholesterol
n_low = 470 # Number of men with low cholesterol

infarct_differences = np.zeros(n)

for i in range(n):
highs = rnd.choice(men, size=n_high)
lows = rnd.choice(men, size=n_low)
high_infarcts = np.sum(highs == 'infarction')
low_infarcts = np.sum(lows == 'infarction')
high_prop = high_infarcts / n_high
low_prop = low_infarcts / n_low
infarct_differences[i] = high_prop - low_prop

# Set the histogram bin edges to the sequence starting at -0.1, up to (not
# including) 0.1, in steps of 0.005.
plt.hist(infarct_differences, bins=np.arange(-0.1, 0.1, 0.005))
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plt.title('Infarct proportion differences in null universe')

# How often was the resampled difference >= the observed difference?
k = np.sum(infarct_differences >= 0.029)
# Convert this result to a proportion
kk = k / n

print('Proportion of trials with difference >= observed:',
np.round(kk, 2))

Proportion of trials with difference >= observed: 0.09
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The results of the test using this program may be seen in the histogram. We find — perhaps
surprisingly — that a difference as large as observed would occur by chance around 10 percent
of the time. (If we were not guided by the theoretical expectation that high serum cholesterol
produces heart disease, we might include the 10 percent difference going in the other direction,
giving a 20 percent chance). Even a ten percent chance is sufficient to call into question the
conclusion that high serum cholesterol is dangerous. At a minimum, this statistical result
should call for more research before taking any strong action clinically or otherwise.

End of notebook: Framingham heart data

framingham_hearts starts at Note 47.

Where should one look to determine which procedures should be used to deal with a problem
such as set forth above? Unlike the formulaic approach, the basic source is not a manual
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which sets forth a menu of formulas together with sets of rules about when they are appropriate.
Rather, you consult your own understanding about what is happening in (say) the Framingham
situation, and the question that needs to be answered, and then you construct a “model” that
is as faithful to the facts as is possible. The bucket-sampling described above is such a model
for the case at hand.

To connect up what we have done with the conventional approach, one could apply a z test
(conceptually similar to the t test, but applicable to yes-no data; it is the Normal-distribution
approximation to the large binomial distribution). Do so, we find that the results are much
the same as the resampling result — an eleven percent probability.

Someone may ask: Why do a resampling test when you can use a standard device such as
a z or t test? The great advantage of resampling is that it avoids using the wrong method.
The researcher is more likely to arrive at sound conclusions with resampling because s/he can
understand what s/he is doing, instead of blindly grabbing a formula which may be in error.

The textbook from which the problem is drawn is an excellent one; the difficulty of its presen-
tation is an inescapable consequence of the formulaic approach to probability and statistics.
The body of complex algebra and tables that only a rare expert understands down to the foun-
dations constitutes an impenetrable wall to understanding. Yet without such understanding,
there can be only rote practice, which leads to frustration and error.

21.2.8 Example: Is one pig ration more effective than the other?

Testing For a Difference in Means With a Two-by-Two Classification.

Each of two new types of ration is fed to twelve pigs. A farmer wants to know whether ration
A or ration B is better.2 The weight gains in pounds for pigs fed on rations A and B are:

A: 31, 34, 29, 26, 32, 35, 38, 34, 31, 29, 32, 31

B: 26, 24, 28, 29, 30, 29, 31, 29, 32, 26, 28, 32

The statistical question may be framed as follows: should one consider that the pigs fed on
the different rations come from the same universe with respect to weight gains?

In the actual experiment, 9 of the 12 pigs who were fed ration A also were in the top half of
weight gains. How likely is it that one group of 12 randomly-chosen pigs would contain 9 of
the 12 top weight gainers?

One approach to the problem is to divide the pigs into two groups — the twelve with the
highest weight gains, and the twelve with the lowest weight gains — and examine whether an
unusually large number of high-weight-gain pigs were fed on one or the other of the rations.

We can make this test by ordering and grouping the twenty four pigs:
2The data for this example are based on Dixon and Massey (1983, 124), who offer an orthodox method of

handling the problem with a t-test.
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• High-weight group: 38 (ration A), 35 (A), 34 (A), 34 (A), 32 (B), 32 (A), 32 (A), 32
(B), 31 (A), 31 (B), 31 (A), 31 (A)

• Low-weight group: 30 (B), 29 (A), 29 (A), 29 (B), 29 (B), 29 (B), 28 (B), 28 (B), 26
(A), 26 (B), 26 (B), 24 (B).

Among the twelve high-weight-gain pigs, nine were fed on ration A. We ask: Is this further
from an even split than we are likely to get by chance? Let us take twelve red and twelve
black cards, shuffle them, and deal out twelve cards (the other twelve need not be dealt out).
Count the proportion of the hands in which one ration comes up nine or more times in the
first twelve cards, to reflect ration A’s appearance nine times among the highest twelve weight
gains. More specifically:

• Step 1. Constitute a deck of twelve red and twelve black cards, and shuffle.
• Step 2. Deal out twelve cards, count the number red, and record “yes” if there are nine

or more of either red or black.
• Step 3. Repeat step 2 perhaps fifty times.
• Step 4. Compute the proportion “yes.” This proportion estimates the probability

sought.

Table 21.5: Results from 25 random trials for pig rations

Trial no # red # black >=9 red or black
1 6 6
2 9 3 +
3 9 3 +
4 7 5
5 7 5
6 8 4
7 5 7
8 8 4
9 7 5
10 10 2 +
11 6 6
12 7 5
13 7 5
14 5 7
15 7 5
16 5 7
17 7 5
18 4 8
19 6 6
20 9 3 +
21 6 6
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Trial no # red # black >=9 red or black
22 8 4
23 7 5
24 7 5
25 9 3 +

Table 21.5 shows the results of 25 trials. In five (marked by + signs) of the 25 (that is, 20
percent of the trials) there were nine or more either red or black cards in the first twelve cards.
Again the results suggest that it would be slightly unusual for the results to favor one ration
or the other so strongly just by chance if they come from the same universe.

Now the Python procedure to answer the question:

Note 48: Notebook: Weight gain on pig rations

• Download notebook
• Interact

The ranks = np.arange(1, 25) statement creates an array of numbers 1 through 24, which
will represent the rankings of weight gains for each of the 24 pigs. We repeat the following
procedure for 10000 trials. First we shuffle the elements of array ranks so that the rank
numbers for weight gains are randomized and placed in array shuffled. We then select the
first 12 elements of shuffled and place them in first_12; this represents the rankings of a
randomly-selected group of 12 pigs. We next count (sum) in n_top the number of pigs whose
rankings for weight gain were in the top half — that is, a rank of less than 13. We record that
number in top_ranks, and then continue the loop, until we finish our n trials.

Since we did not know beforehand the direction of the effect of ration A on weight gain, we
want to count the times that either more than 8 of the random selection of 12 pigs were in the
top half of the rankings, or that fewer than 4 of these pigs were in the top half of the weight
gain rankings — (The latter is the same as counting the number of times that more than 8 of
the 12 non-selected random pigs were in the top half in weight gain.)

We do so with the final two sum statements. By adding the two results n_gte_9 and n_lte_3
together, we have the number of times out of 10,000 that differences in weight gains in two
groups as dramatic as those obtained in the actual experiment would occur by chance.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Constitute the set of the weight gain rank orders. ranks is now a vector
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# consisting of the numbers 1 — 24, in that order.
ranks = np.arange(1, 25)

n = 10_000

top_ranks = np.zeros(n, dtype=int)

for i in range(n):
# Shuffle the ranks of the weight gains.
shuffled = rnd.permuted(ranks)
# Take the first 12 ranks.
first_12 = shuffled[:12]
# Determine how many of these randomly selected 12 ranks are less than
# 12 (i.e. 1-12), put that result in n_top.
n_top = np.sum(first_12 <= 12)
# Keep track of each trial result in top_ranks
top_ranks[i] = n_top

plt.hist(top_ranks, bins=np.arange(1, 12))
plt.title('Number of top 12 ranks in pig-ration trials')
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We see from the histogram that, in about 3 percent of the trials, either more than 8 or fewer
than 4 top half ranks (1-12) made it into the random group of twelve that we selected. Python
will calculate this for us as follows:
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# Determine how many of the trials yielded 9 or more top ranks.
n_gte_9 = np.sum(top_ranks >= 9)
# Determine how many trials yielded 3 or fewer of the top ranks.
# If there were 3 or fewer, then 9 or more of the top ranks must
# have been in the other group (not selected).
n_lte_3 = np.sum(top_ranks <= 3)
# Add the two together.
n_both = n_gte_9 + n_lte_3
# Convert to a proportion.
prop_both = n_both / n

print('Trial proportion >=9 top ranks in either group:',
np.round(prop_both, 2))

Trial proportion >=9 top ranks in either group: 0.04

The decisions that are warranted on the basis of the results depend upon one’s purpose. If
writing a scientific paper on the merits of ration A is the ultimate purpose, it would be sensible
to test another batch of pigs to get further evidence. (Or you could proceed to employ another
sort of test for a slightly more precise evaluation.) But if the goal is a decision on which type
of ration to buy for a small farm and they are the same price, just go ahead and buy ration A
because, even if it is no better than ration B, you have strong evidence that it is no worse.

End of notebook: Weight gain on pig rations

pig_rations starts at Note 48.

21.2.9 Example: Do planet densities differ?

Consider the five planets known to the ancient world.

Mosteller and Rourke (1973, 17–19) ask us to compare the densities of the three planets farther
from the sun than is the earth (Mars, density 0.71; Jupiter, 0.24; and Saturn, 0.12) against
the densities of the planets closer to the sun than is the earth (Mercury, 0.68; Venus, 0.94).

The average density of the distant planets is .357, of the closer planets is .81. Is this difference
(.353) statistically surprising, or is it likely to occur in a chance ordering of these planets?

We can answer this question with a permutation test; such sampling without replacement
makes sense here because we are considering the entire set of planets, rather than a sample
drawn from a larger population of planets (the word “population” is used here, rather than
“universe,” to avoid confusion.) And because the number of objects is so small, one could
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examine all possible arrangements (permutations), and see how many have (say) differences
in mean densities between the two groups as large as observed.

Another method that Mosteller and Rourke suggest is by a comparison of the density ranks
of the two sets, where Saturn has rank 1 and Venus has rank 5. This might have a scientific
advantage if the sample data are dominated by a single “outlier,” whose domination is removed
when we rank the data.

We see that the sum of the ranks for the “closer” set is 3+5=8. We can then ask: If the
ranks were assigned at random, how likely is it that a set of two planets would have a sum as
large as 8? Again, because the sample is small, we can examine all the possible permutations,
as Mosteller and Rourke do in their Table 3-1 (Mosteller and Rourke 1973, 56) (Substitute
“Closer” for “B,” “Further” for “A”). In two of the ten permutations, a sum of ranks as great
as 8 is observed, so the probability of a result as great as observed happening by chance is
20 percent, using these data. (We could just as well consider the difference in mean ranks
between the two groups: (8/2 - 7/3 = 10 / 6 = 1.67).

To illuminate the logic of this test, consider comparing the heights of two samples of trees. If
sample A has the five tallest trees, and sample B has the five shortest trees, the difference in
mean ranks will be (6+7+8+9+10=) 40 — (1+2+3+4+5=) 15, the largest possible difference.
If the groups are less sharply differentiated — for example, if sample A has #3 and sample
B has #8 — the difference in ranks will be less than the maximum of 40, as you can quickly
verify.

The method we have just used is called a Mann-Whitney test, though that label is usually
applied when the data are too many to examine all the possible permutations; in that case
one conventionally uses a table prepared by formula. In the case where there are too many
for a complete permutation test, our resampling algorithm is as follows (though we’ll continue
with the planets example):

1. Compute the mean ranks of the two groups.
2. Calculate the difference between the means computed in step 1.
3. Create a bucket containing the ranks from 1 to the number of observations (5, in the

case of the planets)
4. Shuffle the ranks.
5. Since we are working with the ranked data, we must draw without replacement, because

there can only be one #3, one #7, and so on. So draw the number of observations
corresponding to the number of observations — 2 “Closer” and 3 “Further.”

6. Compute the mean ranks of the two simulated groups of planets.
7. Calculate the difference between the means computed in step 5 and record.
8. Repeat steps 4 through 7 perhaps 1000 times.
9. Count how often the shuffled difference in ranks exceeds the observed difference from

step 2 (1.67).
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Note 49: Notebook: Planet densities and distance

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

# Steps 1 and 2.
actual_mean_diff = 8 / 2 - 7 / 3

# Step 3
ranks = np.arange(1, 6)

n = 10_000

mean_differences = np.zeros(n)

for i in range(n):
# Step 4
shuffled = rnd.permuted(ranks)
# Step 5
closer = shuffled[:2] # First 2
further = shuffled[2:] # Last 3
# Step 6
mean_close = np.mean(closer)
mean_far = np.mean(further)
# Step 7
mean_differences[i] = mean_close - mean_far

# Step 9
k = np.sum(mean_differences >= actual_mean_diff)
prob = k / n

print('Proportion of trials with mean difference >= 1.67:',
np.round(prob, 2))

Proportion of trials with mean difference >= 1.67: 0.19

Interpretation: 19 percent of the time, random shufflings produced a difference in ranks as great
as or greater than observed. Hence, on the strength of this evidence, we should not conclude
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that there is a statistically surprising difference in densities between the further planets and
the closer planets.

End of notebook: Planet densities and distance

planet_densities starts at Note 49.

21.3 Conclusion

This chapter has begun the actual work of testing hypotheses. The next chapter continues
with discussion of somewhat more complex problems with counted data — more complex to
think about, but no more difficult to actually treat mathematically with resampling simulation.
If you have understood the general logic of the procedures used up until this point, you are in
command of all the necessary conceptual knowledge to construct your own tests to answer any
statistical question. A lot more practice, working on a variety of problems, obviously would
help. But the key elements are simple: 1) Model the real situation accurately, 2) experiment
with the model, and 3) compare the results of the model with the observed results.
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22 The Concept of Statistical Significance in
Testing Hypotheses

This chapter offers an interpretation of the meaning of the concept of statistical significance
and the term “significant” in connection with the logic of significance tests. It also discusses
the concept of “level of significance.”

22.1 The logic of hypothesis tests

Let’s address the logic of hypothesis tests by considering a variety of examples in everyday
thinking:

Consider the nine-year-old who tells the teacher that the dog ate the homework. Why does the
teacher not accept the child’s excuse? Clearly it is because the event would be too “unusual.”
But why do we think that way?

Let’s speculate that you survey a million adults, and only three report that they have ever
heard of a real case where a dog ate somebody’s homework. You are a teacher, and a student
comes in without homework and says that a dog ate the homework. It could have happened
— your survey reports that it really has happened in three lifetimes out of a million. But the
event happens only very infrequently. Therefore, you probably conclude that because the event
is so unlikely, something else must have happened — and the likeliest alternative is that the
student did not do the homework. The logic is that if an event seems very unlikely, it would
therefore surprise us greatly if it were to actually happen, and therefore we assume that there
must be a better explanation. This is why we look askance at unlikely coincidences when they
are to someone’s benefit.

The same line of reasoning was the logic of John Arbuthnot’s hypothesis test (1710) about the
ratio of births by sex in the first published hypothesis test, though his extension of logic to
God’s design as an alternative hypothesis goes beyond the standard modern framework. It is
also the implicit logic in the research on puerperal fever, cholera, and beri-beri, the data for
which were shown in Chapter 17, though no explicit mention was made of probability in those
cases.

Two students sat next to each other at an ACT college-entrance examination in Kentucky in
1987. Out of 219 questions, 211 of the answers were identical, including many that were wrong.
Student A was a high school athlete in Kentucky who had failed two previous SAT exams, and
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Student B thought he saw Student A copying from him. Should one believe that Student A
cheated? (The Washington Post, April 19, 1992, p. D2.)

You say to yourself: It would be most unlikely that the two test-takers would answer that
many questions identically by chance — and we can compute how unlikely that event would be.
Because that event is so unlikely, we therefore conclude that one or both cheated. And indeed,
the testing service invalidated the athlete’s exam. On the other hand, if all the questions that
were answered identically were correct, the result might not be unreasonable. If we knew in
how many cases they made the same mistakes, the inquiry would have been clearer, but the
newspaper did not contain those details.

The court is hearing a murder case. There is no eye-witness, and the evidence consists of
such facts as the height and weight and age of the person charged, and other circumstantial
evidence. Only one person in 50 million has such characteristics, and you find such a person.
Will you convict the person, or will you believe that the evidence was just a coincidence? Of
course the evidence might have occurred by bad luck, but the probability is very, very small (1
in 50 million). Will you therefore conclude that because the chance is so small, it is reasonable
to assume that the person charged committed the crime?

Sometimes the unusual really happens — the court errs by judging that the wrong person
did it, and that person goes to prison or even is executed. The best we can do is to make
the criterion strict: “Beyond a reasonable doubt.” (People ask: What probability does that
criterion represent? But the court will not provide a numerical answer.)

Somebody says to you: I am going to deal out five cards and it will be a royal flush — ten,
jack, queen, king, and ace of the same suit. The person deals the cards and lo and behold!
the royal flush appears. Do you think the occurrence happened just by chance? No, you are
likely to be very dubious that it happened by chance. Therefore, you believe there must be
some other explanation — that the person fixed the cards, for example.

Note: You don’t attach the same meaning to any other permutation (say 3, 6, 7, 7, and king
of various suits), even though that permutation is just as rare — unless the person announced
exactly that permutation in advance.

Indeed, even if the person says nothing, you will be surprised at a royal flush, because this
hand has meaning, whereas another given set of five cards do not have any special meaning.

You see six Volvos in one home’s driveway, and you conclude that it is a Volvo club meeting,
or a Volvo salesperson’s meeting. Why? Because it is unlikely that six people not connected
formally by Volvo ownership would be friends of the same person.

Two important points complicate the concept of statistical significance:

1. With a large enough sample, every treatment or variable will seem different from every
other. Two faces of even a good die (say, “1” and “2”) will produce different results in
the very very long run.
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2. Statistical significance does not imply economic or social significance. Two faces of a
die may be statistically different in a huge sample of throws, but a 1/10,000 difference
between them is too small to make an economic difference in betting. Statistical signifi-
cance is only a filter . If it appears, one should then proceed to decide whether there is
substantive significance.

Interpreting statistical significance is sometimes complex, especially when the interpretation
depends heavily upon your prior expectations — as it often does. For example, how should a
basketball coach decide whether or not to bench a player for poor performance after a series
of missed shots at the basket?

Consider Coach John Thompson who, after Charles Smith missed 10 of 12 shots in the 1989
Georgetown-Notre Dame NCAA game, took Smith out of the game for a time (The Washington
Post, March 20, 1989, p. C1). The scientific or decision problem is: Should the coach consider
that Smith is not now a 47 percent shooter as he normally is, and therefore the coach should
bench him? The statistical question is: How likely is a shooter with a 47 percent average to
produce 10 of 12 misses? The key issue in the statistical question concerns the total number
of shot attempts we should consider.

Would Coach Thompson take Smith out of the game after he missed one shot? Clearly not.
Why not? Because one “expects” Smith to miss a shot half the time, and missing one shot
therefore does not seem unusual.

How about after Smith misses two shots in a row? For the same reason the coach still would
not bench him, because this event happens “often” — more specifically, about once in every
sequence of four shots.

How about after 9 misses out of ten shots? Notice the difference between this case and 9 females
among ten calves. In the case of the calves, we expected half females because the experiment
is a single isolated trial. The event considered by itself has a small enough probability that it
seems unexpected rather than expected. (“Unexpected” seems to be closely related to “happens
seldom” or “unusual” in our psychology.) And an event that happens seldom seems to call for
explanation, and also seems to promise that it will yield itself to explanation by some unusual
concatenation of forces. That is, unusual events lead us to think that they have unusual causes;
that is the nub of the matter. (But on the other hand, one can sometimes benefit by paying
attention to unusual events, as scientists know when they investigate outliers.)

In basketball shooting, we expect 47 percent of Smith’s individual shots to be successful, and
we also expect that average for each set of shots. But we also expect some sets of shots to be
far from that average because we observe many sets; such variation is inevitable. So when we
see a single set of 9 misses in ten shots, we are not very surprised.

But how about 29 misses in 30 shots? At some point, one must start to pay attention. (And
of course we would pay more attention if beforehand, and never at any other time, the player
said, “I can’t see the basket today. My eyes are dim.”)
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So, how should one proceed? Perhaps proceed the same way as with a coin that keeps coming
down heads a very large proportion of the throws, over a long series of tosses: At some point
you examine it to see if it has two heads. But if your investigation is negative, in the absence
of an indication other than the behavior in question, you continue to believe that there is no
explanation and you assume that the event is “chance” and should not be acted upon. In the
same way, a coach might ask a player if there is an explanation for the many misses. But if
the player answers “no,” the coach should not bench him. (There are difficulties here with
truth-telling, of course, but let that go for now.)

The key point for the basketball case and other repetitive situations is not to judge that there
is an unusual explanation from the behavior of a single sample alone, just as with a short
sequence of stock-price changes.

We all need to learn that “irregular” (a good word here) sequences are less unusual than they
seem to the naked intuition. A streak of 10 out of 12 misses for a 47 percent shooter occurs
about 3 percent of the time. That is, about every 33 shots Smith takes, he will begin a
sequence of 12 shots that will end with 3 or fewer baskets — perhaps once in every couple of
games. This does not seem “very” unusual, perhaps. And if the coach treats each such case as
unusual, he will be losing some of the services of a better player than he replaces him with.

In brief, how hard one should search for an explanation should depend on the probability of
the event. But one should (almost) assume the absence of an explanation unless one actually
finds it.

Bayesian analysis (Chapter 31) could be brought to bear upon the matter, bringing in your
prior probabilities based on the knowledge of research that has shown that there is no such
thing as a “hot hand” in basketball (see Chapter 14), together with some sort of cost-benefit
error-loss calculation comparing Smith and the next best available player.

22.2 The concept of statistical significance

“Significance level” is a common term in probability statistics. It corresponds roughly to the
probability that the assumed benchmark universe could give rise to a sample as extreme as
the observed sample by chance. The results of Example 16-1 would be phrased as follows: The
hypothesis that the radiation treatment affects the sex of the fruit fly offspring is accepted as
true at the probability level of .16 (sometimes stated as the 16 percent level of significance). (A
more common way of expressing this idea would be to say that the hypothesis is not rejected
at the .16 probability level or the 16 percent level of significance. But “not rejected” and
“accepted” really do mean much the same thing, despite some arguments to the contrary.)
This kind of statistical work is called hypothesis testing.

The question of which significance level should be considered “significant” is difficult. How
great must a coincidence be before you refuse to believe that it is only a coincidence? It has
been conventional in social science to say that if the probability that something happens by
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chance is less than 5 percent, it is significant. But sometimes the stiffer standard of 1 percent
is used. Actually, any fixed cut-off significance level is arbitrary. (And even the whole notion
of saying that a hypothesis “is true” or “is not true” is sometimes not useful.) Whether a
one-tailed or two-tailed test is used will influence your significance level, and this is why care
must be taken in making that choice.
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23 The Statistics of Hypothesis-Testing with
Counted Data, Part 2

Here’s the bad-news-good-news message again: The bad news is that the subject of inferential
statistics is extremely difficult — not because it is complex but rather because it is subtle.
The cause of the difficulty is that the world around us is difficult to understand, and spoon-
fed mathematical simplifications which you manipulate mechanically simply mislead you into
thinking you understand that about which you have not got a clue.

The good news is that you — and that means you, even if you say you are “no good at
mathematics” — can understand these problems with a layperson’s hard thinking, even if
you have no mathematical background beyond arithmetic and you think that you have no
mathematical capability. That’s because the difficulty lies in such matters as pin-pointing the
right question, and understanding how to interpret your results.

The problems in the previous chapter were tough enough. But this chapter considers prob-
lems with additional complications, such as when there are more than two groups, or paired
comparisons for the same units of observation.

But first, we need another addition to our Python vocabulary.

23.1 Logical operators

Note 50: Notebook: Logical operators

• Download notebook
• Interact

This section continues our programme of expanding the range of Python features that you can
use to clear code. As we introduce each feature, we will use them in the following examples.

As motivation, we are about to do some simulations where we are interested in the number of
some particular type of observations in each trial. For example, let’s do 10 coin tosses with
rnd.choice:
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import numpy as np
rnd = np.random.default_rng()

# For each element, heads of tails is equally likely.
coins = rnd.choice(['heads', 'tails'], size=10)
coins

array(['tails', 'tails', 'tails', 'tails', 'tails', 'heads', 'tails',
'tails', 'tails', 'heads'], dtype='<U5')

Let us now say that we are interested to record if the trial had either 2 or fewer “heads” or
two or fewer “tails”.

We could write it like this:

if np.sum(coins == 'heads') <= 2:
print('Trial is of interest')

Trial is of interest

if np.sum(coins == 'tails') <= 2:
print('Trial is of interest')

It is a little repetitive to have to repeat the code identical code to print the same message
for either of the two cases, and it would be even more repetitive if there were more lines of
identical code to run for each of the two cases.

Python solves this problem with the or operator, like this:

if np.sum(coins == 'heads') <= 2 or np.sum(coins == 'tails') <= 2:
print('Trial is of interest')

Trial is of interest

Note 51: What is an operator?

Above, we called or an operator. An operator, for our purposes, is a special character
, or a word, that sits between two values, and that tells Python how to combine these
values.
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For example + is an operator. When + sits between two numbers in code, Python inter-
prets this to mean “take the two numbers on either side, and make a new number that
is the result of adding the two numbers”:

# + is an operator that, between two numbers, means "add the numbers".
1 + 3

4

+, -, / and * are all examples of operators that do arithmetic on the numbers to either
side — they are arithmetic operators.

# * is an operator that, between two numbers, means "multiply the numbers".
2 * 4

8

We are about to use the operator or. or is a logical operator. It is a logical operator because
it does not operate on numbers (as arithmetic operators do), but on logical (Boolean) values
— values that can be either True or False.

For example, here we use or. to combine a True value (on the left) with a False value (on
the right). It gives a result — True.

True or False

True

or applies a very simple rule: if either the left-hand (LH) or the right-hand (RH) values are
True, then or evaluates to True. Only if neither of the LH and RH values are True, does it
return False.

# Both LH and RH are True, return True.
print('True or True result:', True or True)

True or True result: True

# Only LH is True, return True.
print('True or False result:', True or False)

True or False result: True
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# Only RH is True, return True.
print('False or True result:', False or True)

False or True result: True

# Neither LH nor RH are True, return False.
print('False or False result:', False or False)

False or False result: False

Now let’s go back to the if statement above. The conditional part of the header line is:

np.sum(coins == 'heads') <= 2 or np.sum(coins == 'tails') <= 2

np.True_

This will be True either when there there are two or fewer “heads”, or when there are two or
fewer tails. Therefore, when we use this conditional in an if statement, we make the body of
the if statement run only if either of the two conditions are True.

if np.sum(coins == 'heads') <= 2 or np.sum(coins == 'tails') <= 2:
print('Trial is of interest')

Trial is of interest

While we are here, Python has another very useful logical operator: and.

and takes the LH and RH values, and returns True only if both values are True.

# Both LH and RH are True, return True.
print('True and True result:', True and True)

True and True result: True

# Only LH is True, return False.
print('True and False result:', True and False)

True and False result: False
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# Only RH is True, return False.
print('False and True result:', False and True)

False and True result: False

# Neither LH nor RH are True, return False.
print('False and False result:', False and False)

False and False result: False

We could, for example, ask whether the number of heads is >=3 and <=7 (is in the range 3
through 7).

if np.sum(coins == 'heads') >= 3 and np.sum(coins == 'heads') <= 7:
print('Trial is of interest')

Python interval comparison

In fact, Python has a special shortcut syntax called interval comparison for that last
question — whether a number is within a range. It looks like this:

# Asks whether thee number of heads is >= 3 *and* <= 7.
3 <= np.sum(coins == 'heads') <= 7

np.False_

Notice the value at one end of the range the left (here, the lower value), then the com-
parison operator, then the value to compare, then another comparison operator, followed
by the value at the other end of the range on the right.
The interval comparison above is a shortcut for the more verbose version we would need
when using and:

# Also asks whether thee number of heads is >= 3 *and* <= 7.
3 <= np.sum(coins == 'heads') and np.sum(coins == 'heads') <= 7

np.False_
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End of notebook: Logical operators

logical_operators starts at Note 50.

23.2 Comparisons among more than two samples of counted data

23.2.1 Example: Do Any of Four Treatments Affect Sex Ratio in Fruit Flies?

This is an example of the general problem — when the benchmark universe proportion
is known, is the proportion of the binomial population affected by any of the
treatments?

Suppose that, instead of experimenting with just one type of radiation treatment on the flies
(as in Section 21.2.1), you try four different treatments, which we shall label A, B, C, and D.
Treatment A produces fourteen males and six females, but treatments B, C, and D produce
ten, eleven, and ten males, respectively. It is immediately obvious that there is no reason to
think that treatment B, C, or D affects the sex ratio. But what about treatment A?

A frequent and dangerous mistake made by young scientists is to scrounge around in the data
for the most extreme result, and then treat it as if it were the only result. In the context
of this example, it would be fallacious to think that the probability of the fourteen-males-to-
six females split observed for treatment A is the same as the probability that we figured for a
single experiment in the example Section 21.2.1. Instead, we must consider that our benchmark
universe is composed of four sets of twenty trials, each trial having a 50-50 probability of being
male. We can consider that our previous trials 1-4 in Section 21.2.1 constitute a single new
trial, and each subsequent set of four previous trials constitute another new trial. We then ask
how likely a new trial of our sets of twenty flips is to produce one set with fourteen or more
of one or the other sex.

Let us make the procedure explicit, starting at the procedure from Section 21.2.1. Again, we
will check for 14 or more males, or 6 or fewer males (meaning, 14 or more females).

• Step 1. Let tails = male, heads = female.
• Step 2. Flip twenty coins and count the number of tails (males). Call this the count

for group A. Repeat three more times to get counts for groups B, C and D.
• Step 5. If any of the group counts for A, or B or C or D is 14 ore more then record

“Yes”, or if any of the group counts A, B, C, D are 6 or less (meaning >= 14 females),
record “yes”. If neither is true, record “No”.

• Step 4. Repeat steps 2 and 3 perhaps 100 times.
• Step 5. Calculate the proportion of “yes” results in the 100 trials. This proportion

estimates the probability that a fruit fly population with a proportion of 50 percent
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males will produce as many as 14 males, or as many as 14 females, in at least one of four
groups of 20 flies.

We begin the trials with data as in Table 23.1. In two of the six simulation trials, one or
more one samples (groups) shows 14 or more males. Without even concerning ourselves about
whether we should be looking at males or females, or just males, or needing to do more trials,
we can see that it would be very common indeed to have one of four treatments show fourteen
or more of one sex just by chance. This discovery clearly indicates that a result that would
be fairly unusual (five in 25) for a single sample alone is commonplace in one of four observed
samples.

Table 23.1: Results from 6 random trials for Fruitfly 4-group problem

Trial
no

Count for
group A

Count for
group B

Count for
group C

Count for
group D

Any >=14 or
any <=6

1 12 12 8 11 No
2 8 10 11 6 No
3 6 10 11 12 No
4 7 15 13 9 Yes
5 9 10 10 9 No
6 12 11 4 16 Yes

Note 52: Notebook: Fruit fly simulation of four groups

• Download notebook
• Interact

A key point of the notebook here is that each trial consists of four groups of 20 randomly
generated hypothetical fruit flies. And if we consider 10,000 trials, we will be examining
40,000 sets of 20 fruit flies.

In each trial we generate 4 random samples (groups) of 20 fruit flies, and for each, we count
the number of males (“males”s) and then check whether that group has more than 13 of either
sex (actually, more than 13 “males”s or less than 7 “males”). If it does, then we change a
variable called unusual to 1, which informs us that for this sample, at least 1 group of 20 fruit
flies had results as unusual as the results from the fruit flies exposed to the four treatments.

After the 10,000 runs are made, we count the number of trials where one sample had a group
of fruit flies with 14 or more of either sex, and show the results.

import numpy as np
rnd = np.random.default_rng()
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n_iters = 10_000

# Make array to store results for each trial.
results = np.zeros(n_iters)

for i in range(n_iters):
# unusual indicates whether we have obtained any trial group with more
# than 13 of either sex. We start at 0 (= no).
unusual = 0
# Repeat the following steps 4 times to constitute 4 trial groups
# (representing treatments A, B, C, and D) of 20 flies each.
for j in range(4):

flies = rnd.choice(['male', 'female'], size=20)
n_males = np.sum(flies == 'male')
if n_males >= 14 or n_males <= 6:

unusual = 1
# unusual now tells us whether we got a result as extreme as that
# observed (unusual == 1 if we did, unusual == 0 if not). We must
# keep track of this result in the results variable, for each experiment.
results[i] = unusual

# The number of trials for which at least one of the four tests
# exceeded 13 males or 13 females.
k = np.sum(results)
kk = k / n_iters

print('Proportion of trials with one or more group >=14 or <=6 :', kk)

Proportion of trials with one or more group >=14 or <=6 : 0.3808

End of notebook: Fruit fly simulation of four groups

fruit_fly4 starts at Note 52.

In one set of 10,000 trials, there were more than 13 males or more than 13 females 38 percent
of the time — clearly not an unusual occurrence.

23.2.2 Example: Do Four Psychological Treatments Differ in Effectiveness?

Do Several Two-Outcome Samples Differ Among Themselves in Their Propor-
tions?

412



Consider four different psychological treatments designed to rehabilitate young offenders. In-
stead of a numerical test score, there is only a “yes” or a “no” answer as to whether the young
person has kept their record clean or has gotten into trouble again. Call a clean record “suc-
cess”. Label the treatments P, R, S, and T, each of which is administered to a separate group
of twenty young offenders. The number of “success” outcomes per group has been: P, 17; R,
10; S, 10; T, 7. Is it improbable that all four groups come from the same universe?

This problem is like the placebo vs. cancer-cure problem, but now there are more than two
samples. It is also like the four-sample irradiated-fruit flies example (Section 23.2.1), except
that now we are not asking whether any or some of the samples differ from a given universe (50-
50 sex ratio in that case). Rather, we are now asking whether there are differences among the
samples themselves. Please keep in mind that we are still dealing with two-outcome (success-
or-failure, yes-or-no, well-or-sick) problems. The outcomes fall into categories, to which we
give labels (“success” or “failure”, “well” or “sick”). Later we shall take up problems that
are similar except that the outcomes are “quantitative” — in that the outcomes are numbers
rather than labels.

If all four groups were drawn from the same universe, that universe has an estimated success
rate of 17/20 + 10/20 + 10/20 + 7/20 = 44/80 = 55/100 = 55%, because the observed data
taken as a whole constitute our best guess as to the nature of the universe from which they
come — again, if they all come from the same universe. (Please think this matter over a
bit, because it is important and subtle. It may help you to notice the absence of any other
information about the universe from which they have all come, if they have come from the
same universe.)

Therefore, select twenty two-digit numbers for each group from the random-number table,
marking “success” for each number in the range 1 through 55 and “failure” for each number 56
through 100. Conduct a number of such trials. Then count the proportion of times that the
difference between the highest and lowest groups is larger than the widest observed difference,
the difference between P and T (17-7 = 10). In Table 23.2, none of the first six trials shows
anywhere near as large a difference as the observed range of 10, suggesting that it would be
rare for four treatments that are “really” similar to show so great a difference. There is thus
reason to believe that P and T differ in their effects.

Table 23.2: Results of Six Random Trials for Problem “offenders”

Trial P R S T Largest Minus Smallest
1 11 9 8 12 4
2 10 10 12 12 2
3 9 12 8 12 4
4 9 11 12 10 3
5 10 10 11 12 1
6 11 11 9 11 2

413



The strategy of the Python solution to “offenders” is similar to the strategy for previous
problems in this chapter. The benchmark (null) hypothesis is that the treatments do not differ
in their effects observed, and we estimate the probability that the observed results would occur
by chance using the benchmark universe. The only new twist is that we must instruct the
computer to find the groups with the highest and the lowest numbers of success rates.

Using Python, we generate four “treatments,” each represented by 20 labels. We draw these
20 labels from the choices “success” or “failure”, with a 55% chance of getting “success” and
a 45% chance of “failure”. Follow along in the program for the rest of the procedure:

Note 53: Notebook: Simulation of offender strategies

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

# set up the random number generator
rnd = np.random.default_rng()

# Set the number of trials
n_trials = 10_000

# Set the sample size for each trial
sample_size = 20

# An empty array to store the trial results.
scores = np.zeros(n_trials)

# Do 10000 trials
for i in range(n_trials):

# The first treatment group
a = rnd.choice(['success', 'failure'], p=[0.55, 0.45], size=20)
# Count successes.
a_count = np.sum(a == 'success')
# Second, third and fourth treatment groups, and successes.
b = rnd.choice(['success', 'failure'], p=[0.55, 0.45], size=20)
b_count = np.sum(b == 'success')
c = rnd.choice(['success', 'failure'], p=[0.55, 0.45], size=20)
c_count = np.sum(c == 'success')
d = rnd.choice(['success', 'failure'], p=[0.55, 0.45], size=20)
d_count = np.sum(d == 'success')
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# Now find all the pairwise differences in successes among the groups.
a_minus_b = a_count - b_count
a_minus_c = a_count - c_count
a_minus_d = a_count - d_count
b_minus_c = b_count - c_count
b_minus_d = b_count - d_count
c_minus_d = c_count - d_count

# Concatenate, or join, all the differences in a single array "diffs".
diffs = np.array([a_minus_b, a_minus_c, a_minus_d,

b_minus_c, b_minus_d, c_minus_d])
# Since we are interested only in the magnitude of the difference, not its
# direction, we take the absolute value of all the differences (we remove
# any minus signs, making all values positive).
abs_diffs = np.abs(diffs)
# Find the largest of all the differences
max_abs_diff = np.max(abs_diffs)
# Keep score of the largest
scores[i] = max_abs_diff

# End a trial, go back and repeat until all 10000 are complete.

# How many of the trials yielded a maximum difference greater than the
# observed maximum difference?
k = np.sum(scores >= 10)
# Convert to a proportion
kk = k / n_trials

print('Proportion >= 10 was', kk)

Proportion >= 10 was 0.0121

End of notebook: Simulation of offender strategies

offenders starts at Note 53.

Only one percent of the experiments with randomly generated treatments from a common
success rate of .55 produced differences in excess of the observed maximum difference (10).

An alternative approach to this problem would be to deal with each result’s departure from the
mean, rather than the largest difference among the pairs. Once again, we want to deal with
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absolute departures, since we are interested only in magnitude of difference. We could take the
absolute value of the differences, as above, but we will try something different here. Squaring
the differences also renders them all positive: this is a common approach in statistics.

Note 54: Notebook: Simulation of offender strategies using squared differences

• Download notebook
• Interact

The first step is to examine our data and calculate this measure: The mean is 11, the differences
(call deviations from the mean) are 6, 1, 1, and 4, the squared deviations are 36, 1, 1, and 16,
and their sum is 54. In Python:

# The actual scores for each treatment.
treat_scores = np.array([17, 10, 10, 7])
# The mean.
m = np.mean(treat_scores)
# The four deviations from the mean
deviations = treat_scores - m
# Squared deviations.
sq_deviations = deviations ** 2
# Sum of squared deviations.
actual_sum_sq_deviations = np.sum(sq_deviations)
# Show the result.
actual_sum_sq_deviations

np.float64(54.0)

Our experiment will be, as before, to constitute four groups of 20 at random from a universe
with a 55 percent rehabilitation rate. We then calculate this same measure for the random
groups. If it is frequently larger than 54, then we conclude that a uniform cure rate of 55 percent
could easily have produced the observed results. The program that follows also generates the
four treatments by using a for loop, rather than spelling out the rnd.choice command 4
times as above. In Python:

import numpy as np
import matplotlib.pyplot as plt

# Set up the random number generator.
rnd = np.random.default_rng()

# Set the number of trials.
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n_trials = 10000

# Set the sample size for each trial.
sample_size = 20

# An empty array to store the trials.
scores = np.zeros(n_trials)

# Do 10000 trials
for i in range(n_trials):

# Repeat the following steps 4 times to constitute 4 groups of 20 and
# count their success rates.
group_scores = np.zeros(4)
for group_no in range(4): # for 0, 1, 2, 3.

# A treatment group
group = rnd.choice(['success', 'failure'], p=[0.55, 0.45], size=20)
# Count successes.
group_count = np.sum(group == 'success')
# Store result
group_scores[group_no] = group_count
# End the procedure for one group of 20, go back and repeat until all 4
# are done.

# Calculate the mean
m = np.mean(group_scores)
# Calculate the deviations of the scores from the mean of the scores.
deviations = group_scores - m
# Square them, making them them positive.
sq_deviations = deviations ** 2
# Sum up the squared deviations.
sum_sq_deviations = np.sum(sq_deviations)
# Keep track of the result for each trial.
scores[i] = sum_sq_deviations

# End a trial, go back and repeat until all 10000 are complete.

# Produce a histogram of the trial results.
plt.hist(scores, bins=50)
plt.title('Distribution of sum of squared deviations, in null universe')
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From this histogram, we see that in only about 1 percent of the cases did our trial sum of
squared differences equal or exceed 54, confirming our conclusion that this is an unusual result.
We can have Python calculate this proportion:

# How many of the trials yielded a maximum difference greater than the
# observed maximum difference?
k = np.sum(scores >= actual_sum_sq_deviations)
# Convert to a proportion
kk = k / n_trials

print('Proportion >=', actual_sum_sq_deviations, 'was:', kk)

Proportion >= 54.0 was: 0.0112

The conventional way to approach this problem would be with what is known as a chi-squared
test.

End of notebook: Simulation of offender strategies using squared differences

offenders_squared starts at Note 54.

23.2.3 Example: Three-way Comparison

In a national election poll of 750 respondents in May, 1992, George Bush got 36 percent of the
preferences (270 voters), Ross Perot got 30 percent (225 voters), and Bill Clinton got 28 percent
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(210 voters), with 45 undecided (Wall Street Journal, October 29, 1992, A16). Assuming that
the poll was representative of actual voting, how likely is it that Bush was actually behind and
just came out ahead in this poll by chance? Or to put it differently, what was the probability
that Bush actually had a plurality of support, rather than that his apparent advantage was
a matter of sampling variability? We test this by constructing a universe in which Bush is
slightly behind (in practice, just equal), and then drawing samples to see how likely it is that
those samples will show Bush ahead.

We must first find that universe — among all possible universes that yield a conclusion contrary
to the conclusion shown by the data, and one in which we are interested — that has the highest
probability of producing the observed sample. With a two-person race the universe is obvious:
a universe that is evenly split except for a single vote against “our” candidate who is now in
the lead, i.e. in practice a 50-50 universe. In that simple case we then ask the probability that
that universe would produce a sample as far out in the direction of the conclusion drawn from
the observed sample as the observed sample.

With a three-person race, however, the decision is not obvious (and if this problem becomes
too murky for you, skip over it; it is included here more for fun than anything else). And there
is no standard method for handling this problem in conventional statistics (a solution in terms
of a confidence interval was first offered in 1992, and that one is very complicated and not very
satisfactory to me (JLS)). But the sort of thinking that we must labor to accomplish is also
required for any conventional solution; the difficulty is inherent in the problem, rather than
being inherent in resampling, and resampling will be at least as simple and understandable as
any formulaic approach.

Before we start to think about this problem, let us simplify by ignoring the 45 undecided
voters, and adjusting the poll percentages accordingly. Of the remaining voters, Bush got 270
/ 705 = 38.3%, Perot had 225 / 705 = 31.9%, and Clinton had 210 / 705 = 29.8%. Bush’s
lead over Perot, in voters with a declared preference, was therefore 38.3 - 31.9 = 6.4%.

The relevant universe is (or so I think) a universe that is 35 Bush — 35 Perot — 30 Clinton
(for a race where the poll indicates a 38.3-31.9-29.8% split); the 35-35-30 universe is of interest
because it is the universe that is closest to the observed sample that does not provide a win
for Bush; it is roughly analogous to the 50-50 split in the two-person race, though a clear-cut
argument would require a lot more discussion. A universe that is split 34-34-32, or any of
the other possible universes, is less likely to produce a 36-30-28 sample (such as was observed)
than is a 35-35-30 universe.1. (In technical terms, it might be a “maximum likelihood universe”
that we are looking for.) For completeness, we might also try a 36-36-28 universe to see if that
produces a result very different than the 35-35-30 universe.

1We are interested in choosing the benchmark universe that a) has Bush with equal or lower percentage votes
than another candidate and b) has the largest probability of giving rise to the observed vote proportions
in the sample. We can show by trying all possible options that the 35, 35, 30 universe has the highest
probability in giving rise to the (38.3%, 31.9%, 29.8%) sample percentages (270, 225, 210 vote counts). See
this Python notebook for the simulation.
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Among those universes where Bush is behind (or equal), a universe that is split 50-50-0 (with
just one extra vote for the closest opponent to Bush) would be the most likely to produce a
6 percent difference between the top two candidates by chance, but we are not prepared to
believe that the voters are split in such a fashion. This assumption shows that we are bringing
some judgments to bear from outside the observed data.

For now, the point is not how to discover the appropriate benchmark hypothesis, but rather
its criterion — which is, I repeat, that universe (among all possible universes) that yields
a conclusion contrary to the conclusion shown by the data (and in which we are interested)
and that (among such universes that yield such a conclusion) has the highest probability of
producing the observed sample.

Let’s go through the logic again: 1) Bush apparently has a 6.4% percent lead over the second-
place candidate. 2) We ask if the second-place candidate might be ahead if all voters were
polled, rather than just this sample. We test that by setting up a universe in which the second-
place candidate is infinitesimally ahead (in practice, we make the two top candidates equal in
our hypothetical universe). And we make the third-place candidate somewhere close to the
top two candidates. 3) We then draw samples from this universe and observe how often the
result is a 6.4% percent lead for the top candidate (who starts off just below or equal in the
universe).

From here on, the procedure is straightforward: Determine how likely that universe is to
produce a sample as far (or further) away in the direction of “our” candidate winning. (One
could do something like this even if the candidate of interest were not now in the lead.)

This problem teaches again that one must think explicitly about the choice of a benchmark
hypothesis. The grounds for the choice of the benchmark hypothesis should precede the
notebook, or should be included as an extended commentary within the notebook.

This Python code embodies the previous line of thought.

Note 55: Notebook: Simulation of Bush / Clinton polling

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

# set up the random number generator
rnd = np.random.default_rng()

# Set the number of trials.
n_trials = 10000
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# Number of voters who expressed a preference.
n_voters = 705

# Benchmark proportions.
bench_ps = [0.35, 0.35, 0.30]

# An empty array to store the trials.
scores = np.zeros(n_trials)

# Do 10000 trials
for i in range(n_trials):

# Take a sample of 705 votes, with replacement.
samp = rnd.choice(['Bush', 'Perot', 'Clinton'],

p=bench_ps,
size=n_voters)

# Count the Bush voters, etc.
n_bush = np.sum(samp == 'Bush')
n_perot = np.sum(samp == 'Perot')
n_clinton = np.sum(samp == 'Clinton')
# Join Perot & Clinton votes in an array.
others = np.array([n_perot, n_clinton])
# Find the larger of the other two.
n_second = np.max(others)
# Find Bush's margin over 2nd.
lead = n_bush - n_second
# Convert vote difference to percent lead.
pct_lead = lead / n_voters * 100
# Store the result.
scores[i] = pct_lead

plt.hist(scores, bins=50)
plt.title('Distribution of Bush margin over second candidate')

# Compare to the observed margin in the sample of 705 corresponding to a 6.4
# percent margin by Bush over 2nd place finisher.
k = np.sum(scores >= 6.4)
kk = k / n_trials

print('Proportion of trials where Bush margin >= 6.4%:', kk)

Proportion of trials where Bush margin >= 6.4%: 0.0182
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End of notebook: Simulation of Bush / Clinton polling

bush_clinton starts at Note 55.

When we run this program with a 36-36-28 split, we also get a similar result — around 2.2
percent (try it — edit bench_ps in the notebook and run it again).

Our main result is that our 35-35-30 analysis shows a probability of only 1.8 percent that Bush
would score a 6.4 percentage point “victory” in the sample, by chance, if the universe were
split as specified. So Bush could feel reasonably confident that at the time the poll was taken,
he was ahead of the other two candidates.

23.3 Paired Comparisons With Counted Data

23.3.1 Example: the pig rations again, but comparing pairs of pigs

This is a Paired-Comparison Test.

To illustrate how several different procedures can reasonably be used to deal with a given
problem, here is another way to decide whether pig ration A is “really” better: We can assume
that the order of the pig scores listed within each ration group is random — perhaps the order
of the stalls the pigs were kept in, or their alphabetical-name order, or any other random order
not related to their weights. Match the first pig eating ration A with the first pig eating ration
B, and also match the second pigs, the third pigs, and so forth. Then count the number of
matched pairs on which ration A does better. On nine of twelve pairings ration A does better,
that is, 31.0 > 26.0, 34.0 > 24.0, and so forth.
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Now we can ask: If the two rations are equally good, how often will one ration exceed the
other nine or more times out of twelve, just by chance? This is the same as asking how often
either heads or tails will come up nine or more times in twelve tosses. (This is a “two-tailed”
test because, as far as we know, either ration may be as good as or better than the other.)
Once we have decided to treat the problem in this manner, it is quite similar to Section 21.2.1
(the first fruitfly irradiation problem). We ask how likely it is that the outcome will be as far
away as the observed outcome (9 “heads” of 12) from 6 of 12 (which is what we expect to get
by chance in this case if the two rations are similar).

So we conduct perhaps fifty trials as in Table 23.3, where an asterisk denotes nine or more
heads or tails.

• Step 1. Let odd numbers equal “A better” and even numbers equal “B better.”
• Step 2. Examine 12 random digits and check whether 9 or more, or 3 or less, are odd.

If so, record “yes,” otherwise “no.”
• Step 3. Repeat step 2 fifty times.
• Step 4. Compute the proportion “yes,” which estimates the probability sought.

The results are shown in Table 23.3.

In 8 of 50 simulation trials, one or the other ration had nine or more tosses in its favor.
Therefore, we estimate the probability to be .16 (eight of fifty) that samples this different
would be generated by chance if the samples came from the same universe.

Table 23.3: Results from fifty simulation trials of the paired pigs problem

Trial

“Heads” or
“Odds”

“Tails” or
“Evens” Trial

“Heads” or
“Odds”

“Tails” or
“Evens”

Ration A Ration B Ration A Ration B
1 6 6 26 6 6
2 4 8 27 5 7
3 6 6 28 7 5
4 7 5 29 4 8
5 3 9 30 6 6
6 5 7 31 9 3
7 8 4 32 2 10
8 6 6 33 7 5
9 7 5 34 5 7
10 9 3 35 6 6
11 7 5 36 8 4
12 3 9 37 6 6
13 5 7 38 4 8
14 6 6 39 5 7
15 6 6 40 8 4
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Trial

“Heads” or
“Odds”

“Tails” or
“Evens” Trial

“Heads” or
“Odds”

“Tails” or
“Evens”

Ration A Ration B Ration A Ration B
16 8 4 41 5 7
17 5 7 42 6 6
18 9 3 43 5 7
19 6 6 44 7 5
20 7 5 45 6 6
21 4 8 46 4 8
22 10 2 47 5 7
23 6 6 48 5 7
24 5 7 49 8 4
25 3 9 50 7 5

Now for a Python program and results. This notebook is different from the example at
Section 21.2.8 in that it compares the weight-gain results of pairs of pigs, instead of simply
looking at the rankings for weight gains.

The key to the pigs pair notebook is the rnd.choice line. If we assume that ration A does
not have an effect on weight gain (which is the “benchmark” or “null” hypothesis), then the
results of the actual experiment would be no different than if we randomly rnd.choice “A”
and “B” and treat an “A” as a larger weight gain for the ration A pig, and a “B” as a larger
weight gain for the ration B pig. Both events have a .5 chance of occurring for each pair of
pigs because if the rations had no effect on weight gain (the null hypothesis), ration A pigs
would have larger weight gains about half of the time. The next step is to count (sum) the
number of times that the weight gains of one group (call it the group fed with ration A) were
larger than the weight gains of the other (call it the group fed with ration B). The complete
program follows:

Note 56: Notebook: Paired test for pig rations

• Download notebook
• Interact

import numpy as np
rnd = np.random.default_rng()

n_iters = 10_000

# Make array to store results for each trial.
results = np.zeros(n_iters)
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# Do 10000 trials
for i in range(n_iters):

# Generate randomly 12 "A" or "B"s. Each of the 12 values represents
# one "pairing" where "A" = ration A "wins," "B" = ration B "wins.".
wins = rnd.choice(['A', 'B'], size=12)
# Count the number of "pairings" where ration A won, put the result in
# "n_a_wins".
n_a_wins = np.sum(wins == 'A')
# Keep track of the result in results.
results[i] = n_a_wins
# End the trial, go back and repeat until all 10000 trials are complete.

# Determine how often we got 9 or more "wins" for ration A.
high = np.sum(results >= 9)
# Determine how often we got 3 or fewer "wins" for ration A.
low = np.sum(results <= 3)
# Add the two together
k = high + low
# Convert to a proportion
kk = k / n_iters
# Print the result.
print('Proportion >=9 or <=3:', kk)

Proportion >=9 or <=3: 0.1391

End of notebook: Paired test for pig rations

pig_pairs starts at Note 56.

Notice how we proceeded in examples Section 21.2.8 and Section 23.3.1. The data were origi-
nally quantitative — weight gains in pounds for each pig. But for simplicity we classified the
data into simpler counted-data formats. The first format (Section 21.2.8) was a rank order,
from highest to lowest. The second format (Section 23.3.1) was simply higher-lower, obtained
by randomly pairing the observations (using alphabetical letter, or pig’s stall number, or what-
ever was the cause of the order in which the data were presented to be random). Classifying
the data in either of these ways loses some information and makes the subsequent tests some-
what cruder than more refined analysis could provide (as we shall see in the following chapter),
but the loss of efficiency is not crucial in many such cases. We shall see how to deal directly
with the quantitative data in Chapter 24.
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23.3.2 Example: merged firms compared to two non-merged groups

In a study by Simon, Mokhtari, and Simon (1996), a set of 33 advertising agencies that merged
over a period of years were each compared to entities within two groups (each also of 33 firms)
that did not merge; one non-merging group contained firms of roughly the same size as the
final merged entities, and the other non-merging group contained pairs of non-merging firms
whose total size was roughly the same as the total size of the merging entities.

The idea behind the matching was that each pair of merged firms was compared against

1. a pair of contemporaneous firms that were roughly the same size as the merging firms
before the merger, and

2. a single firm that was roughly the same size as the merged entity after the merger.

Here (Table 23.4) are the data (provided by the authors):

Table 23.4: Revenue Growth In Year 1 Following Merger

Set # Merged Match1 Match2
1 -0.200 0.026 0.000
2 -0.348 -0.125 0.080
3 0.075 0.063 -0.023
4 0.126 -0.042 0.165
5 -0.102 0.080 0.278
6 0.038 0.149 0.430
7 0.116 0.152 0.143
8 -0.098 0.038 0.040
9 0.021 0.077 0.011
10 -0.017 0.284 0.189
11 -0.365 0.139 0.039
12 0.088 0.039 0.095
13 -0.263 0.056 0.045
14 -0.049 0.054 0.008
15 0.011 0.048 0.095
16 0.010 0.198 0.061
17 0.071 0.421 -0.025
18 0.002 0.074 0.053
19 0.005 -0.007 0.050
20 -0.054 0.172 0.110
21 0.023 0.028 -0.022
22 0.060 0.049 0.167
23 -0.060 0.026 0.021
24 -0.089 -0.059 0.077
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Set # Merged Match1 Match2
25 -0.025 -0.018 0.060
26 0.076 0.013 0.035
27 -0.002 -0.045 0.054
28 -0.220 0.343 0.043
29 0.382 0.221 0.116
30 -0.007 0.255 0.237
31 -0.163 0.011 0.190
32 0.192 0.150 0.152
33 0.061 0.170 0.094

Comparisons were made in several years before and after the mergings to see whether the
merged entities did better or worse than the non-merging entities they were matched with by
the researchers, but for simplicity we may focus on just one of the more important years in
which they were compared — say, the revenue growth rates in the year after the merger.

Here are those average revenue growth rates for the three groups:

Table 23.5: Year’s revenue growth

Mean revenue growth
Merged -0.021
Match1 0.092
Match2 0.093

We could do a general test to determine whether there are differences among the means of the
three groups, as was done in the “Differences Among 4 Pig Rations” problem (Section 24.0.1).
However, we note that there may be considerable variation from one matched set to another
— variation which can obscure the overall results if we resample from a large general bucket.

Therefore, we use the following resampling procedure that maintains the separation between
matched sets by converting each observation into a rank (1, 2 or 3) within the matched set.

Here (Table 23.6) are those ranks, where 1 = worst, 3 = best:

Table 23.6: Revenue growth ranked within matched set (1=best)

Set # Merged Match1 Match2
1 1 3 2
2 1 2 3
3 3 2 1
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Set # Merged Match1 Match2
4 2 1 3
5 1 2 3
6 1 2 3
7 1 3 2
8 1 2 3
9 2 3 1
10 1 3 2
11 1 3 2
12 2 1 3
13 1 3 2
14 1 3 2
15 1 2 3
16 1 3 2
17 2 3 1
18 1 3 2
19 2 1 3
20 1 3 2
21 2 3 1
22 2 1 3
23 1 3 2
24 1 2 3
25 1 2 3
26 3 1 2
27 2 1 3
28 1 3 2
29 3 2 1
30 1 3 2
31 1 2 3
32 3 1 2
33 1 3 2

These (Table 23.7) are the average ranks for the three groups (1 = worst, 3 = best):

Table 23.7: Mean rank of year revenue growth

Mean rank
Merged 1.49
Match1 2.27
Match2 2.24
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Is it possible that the merged group received such a low (poor) average ranking just by
chance? The null hypothesis is that the ranks within each set were assigned randomly, and
that “merged” came out so poorly just by chance. The following procedure simulates random
assignment of ranks to the “merged” group:

1. Randomly select 33 integers between “1” and “3” (inclusive).
2. Find the average rank & record.
3. Repeat steps 1 and 2, say, 10,000 times.
4. Find out how often the average rank is as low as 1.48.

Here’s a Python notebook to apply those steps:

Note 57: Notebook: Merger rank test

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

n_iters = 10_000

# Make array to store results for each trial.
results = np.zeros(n_iters)

for i in range(n_iters):
ranks = rnd.choice([1, 2, 3], size=33)
mean_rank = np.mean(ranks)
results[i] = mean_rank

plt.hist(results, bins=20)
plt.title('Mean ranks from random rank sampling')

k = np.sum(results <= 1.48)
kk = k / n_iters

print('Proportion of mean ranks <= 1.48:', kk)

Proportion of mean ranks <= 1.48: 0.0

429

https://resampling-stats.github.io/edition-3-python/notebooks/merger_ranks.ipynb
https://resampling-stats.github.io/edition-3-python/interact/lab/index.html?path=merger_ranks.ipynb


1.6 1.8 2.0 2.2 2.4
0

200

400

600

800

1000

1200

1400

1600

Mean ranks from random rank sampling

End of notebook: Merger rank test

merger_ranks starts at Note 57.

Interpretation: 10000 random selections of 33 ranks produced an average as low as the observed
average in approximately 0 percent of the trials. Therefore we rule out chance as an explanation
for the poor ranking of the merged firms.

Exactly the same technique might be used in experimental medical studies wherein subjects in
an experimental group are matched with two different entities that receive placebos or control
treatments.

For example, there have been several recent three-way tests of treatments for depression:
drug therapy versus cognitive therapy versus combined drug and cognitive therapy. If we
are interested in the combined drug-therapy treatment in particular, comparing it to standard
existing treatments, we can proceed in the same fashion as in the merger problem.

We might just as well consider the real data from the merger as hypothetical data for a
proposed test in 33 triplets of people that have been matched within triplet by sex, age, and
years of education. The three treatments were to be chosen randomly within each triplet.

Assume that we now switch scales from the merger data, so that #1 = best and #3 = worst,
and that the outcomes on a series of tests were ranked from best (#1) to worst (#3) within
each triplet. Assume that the combined drug-and-therapy regime has the best average rank.
How sure can we be that the observed result would not occur by chance? Here are the data
from the merger study, seen here as Table 23.8:
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Table 23.8: Ranked therapies within matched-patient triplets (1=best)

Triplet # Therapy only Combined Drug only
1 1 3 2
2 1 2 3
3 3 2 1
4 2 1 3
5 1 2 3
6 1 2 3
7 1 3 2
8 1 2 3
9 2 3 1

10 1 3 2
11 1 3 2
12 2 1 3
13 1 3 2
14 1 3 2
15 1 2 3
16 1 3 2
17 2 3 1
18 1 3 2
19 2 1 3
20 1 3 2
21 2 3 1
22 2 1 3
23 1 3 2
24 1 2 3
25 1 2 3
26 3 1 2
27 2 1 3
28 1 3 2
29 3 2 1
30 1 3 2
31 1 2 3
32 3 1 2
33 1 3 2

These (Table 23.9) are the average ranks for the three groups (1 = best, 3 = worst):
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Table 23.9: Mean rank of therapy in matched triplets

Mean rank
Therapy only 1.49
Combined 2.27
Drug only 2.24

In these hypothetical data, the average rank for the drug and therapy regime is 1.48. Is it
likely that the regimes do not “really” differ with respect to effectiveness, and that the drug
and therapy regime came out with the best rank just by the luck of the draw? We test by
asking, “If there is no difference, what is the probability that the treatment of interest will get
an average rank this good, just by chance?”

We proceed exactly as with the solution for the merger problem (see above).

In the above problems, we did not concern ourselves with chance outcomes for the other
therapies (or the matched firms) because they were not our primary focus. If, in actual fact,
one of them had done exceptionally well or poorly, we would have paid little notice because
their performance was not the object of the study. We needed, therefore, only to guard against
the possibility that chance good luck for our therapy of interest might have led us to a hasty
conclusion.

Suppose now that we are not interested primarily in the combined drug-therapy treatment,
and that we have three treatments being tested, all on equal footing. It is no longer sufficient
to ask the question “What is the probability that the combined therapy could come out this
well just by chance?” We must now ask “What is the probability that any of the therapies
could have come out this well by chance?” (Perhaps you can guess that this probability will
be higher than the probability that our chosen therapy will do so well by chance.)

Here is a resampling procedure that will answer this question:

Note 58: Notebook: Minimum average rank

• Download notebook
• Interact

1. Put the numbers “1”, “2” and “3” (corresponding to ranks) in a bucket
2. Shuffle the numbers and deal them out to three locations that correspond to treatments

(call the locations “t1,” “t2,” and “t3”)
3. Repeat step two another 32 times (for a total of 33 repetitions, for 33 matched triplets)
4. Find the average rank for each location (treatment).
5. Record the minimum (best) score.
6. Repeat steps 2-4, say, 10,000 times.
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7. Find out how often the minimum average rank for any treatment is as low as 1.48.

import numpy as np
import matplotlib.pyplot as plt

# set up the random number generator
rnd = np.random.default_rng()

# Set the number of trials
n_iters = 10_000

# An empty array to store the trial results.
results = np.zeros(n_iters)

# Step 1 above.
bucket = np.array([1, 2, 3])

n_rows = 33

# Do 10000 trials (step 6).
for i in range(n_iters):

# Prepare arrays to store shuffled row results.
t1 = np.zeros(n_rows)
t2 = np.zeros(n_rows)
t3 = np.zeros(n_rows)
# Step 3 (for all 33 rows).
for row_no in range(n_rows):

# Step 2.
shuffled = rnd.permuted(bucket)
# Step 2 continued.
t1[row_no] = shuffled[0]
t2[row_no] = shuffled[1]
t3[row_no] = shuffled[2]

# Step 4.
m_t1 = np.mean(t1)
m_t2 = np.mean(t2)
m_t3 = np.mean(t3)
# Step 5.
means = np.array([m_t1, m_t2, m_t3])
min_mean = np.min(means)
results[i] = min_mean

plt.hist(results, bins=50)
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plt.title('Distribution of minimum average rank')

# Step 7.
k = np.sum(results <= 1.48)
kk = k / n_iters

print('Proportion minimum average rank <= 1.48:', kk)

Proportion minimum average rank <= 1.48: 0.0001
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End of notebook: Minimum average rank

minimum_average_rank starts at Note 58.

Interpretation: We did 10,000 random shufflings of 33 ranks, apportioned to three “treatments”.
Of these, about 0 percent produced, for the best treatment in the three, an average as low
as the observed average, therefore we rule out chance as an explanation for the success of the
combined therapy.

An interesting feature of the mergers (or depression treatment) problem is that it would be
hard to find a conventional test that would handle this three-way comparison in an efficient
manner. Certainly it would be impossible to find a test that does not require formulae and
tables that only a talented professional statistician could manage satisfactorily, and even they
are not likely to fully understand those formulaic procedures.
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23.4 Technical note

Some of the tests introduced in this chapter are similar to standard non-parametric rank and
sign tests. They differ less in the structure of the test statistic than in the way in which
significance is assessed (the comparison is to multiple simulations of a model based on the
benchmark hypothesis, rather than to critical values calculated analytically).
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24 The Statistics of Hypothesis-Testing With
Measured Data

Chapter 21 and Chapter 19 discussed testing a hypothesis with data that either arrive in
dichotomized (yes-no) form, or come as data in situations where it is convenient to dichotomize.
We next consider hypothesis testing using measured data. Conventional statistical practice
employs such devices as the “t-test” and “analysis of variance.” In contrast to those complex
devices, the resampling method does not differ greatly from what has been discussed in previous
chapters.

24.0.1 Example: The Pig Rations Still Once Again, Using Measured Data

Testing for the difference between means of two equal-sized samples of measured-
data observations

Let us now treat the pig-food problem without converting the quantitative data into qualitative
data, because a conversion always loses information.

The term “lose information” can be understood intuitively. Consider two sets of three sacks of
corn. Set A includes sacks containing, respectively, one pound, two pounds, and three pounds.
Set B includes sacks of one pound, two pounds, and a hundred pounds. If we rank the sacks
by weight, the two sets can no longer be distinguished. The one-pound and two-pound sacks
have ranks one and two in both cases, and their relative places in their sets are the same. But
if we know not only that the one-pound sack is the smallest of its set and the three-pound or
hundred-pound sack is the largest, but also that the largest sack is three pounds (or a hundred
pounds), we have more information about a set than if we only know the ranks of its sacks.

Rank data are also known as “ordinal” data, whereas data measured in (say) pounds are known
as “cardinal” data. Even though converting from cardinal (measured) to ordinal (ranked) data
loses information, the conversion may increase convenience, and may therefore be worth doing
in some cases.

Table 24.1 has the measured data for pig rations A and B.
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Table 24.1: Measured data for pig rations A and B

ration weight_gain
A 31
A 34
A 29
A 26
A 32
A 35
A 38
A 34
A 31
A 29
A 32
A 31
B 26
B 24
B 28
B 29
B 30
B 29
B 31
B 29
B 32
B 26
B 28
B 32

We begin a measured-data procedure by noting that if the two pig foods are the same, then
each of the observed weight gains came from the same benchmark universe. This is the basic
tactic in our statistical strategy. That is, if the two foods came from the same universe, our
best guess about the composition of that universe is that it includes weight gains just like the
twenty-four we have observed, and in the same proportions, because that is all the information
that we have about the universe; this is the bootstrap method. Since ours is (by definition) a
sample from an infinite (or at least, a very large) universe of possible weight gains, we assume
that there are many weight gains in the universe just like the ones we have observed, in the
same proportion as we have observed them. For example, we assume that 2/24 of the universe
is composed of 34-pound weight gains, as seen in Figure 24.1:

We recognize, of course, that weight gains other than the exact ones we observed certainly
would occur in repeated experiments. And if we thought it reasonable to do so, we could
assume that the “distribution” of the weight gains would follow a regular “smooth” shape
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Histogram of all weight gains for rations A and B
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Figure 24.1: Histogram of weight gain

such as Figure 24.2. But deciding just how to draw Figure 24.2 from the data in Figure 24.1
requires that we make arbitrary assumptions about unknown conditions. And if we were to
draw Figure 24.2 in a form that would be sufficiently regular for conventional mathematical
analysis, we might have to make some very strong assumptions going far beyond the observed
data.
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Idealized distribution of all weight gains
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Figure 24.2: Idealized distribution for weight gain

Drawing a smooth curve such as Figure 24.2 from the raw data in Figure 24.1 might be
satisfactory — if done with wisdom and good judgment. But there is no necessity to draw
such a smooth curve, in this case or in most cases. We can proceed by assuming simply that the
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benchmark universe — the universe to which we shall compare our samples, conventionally
called the “null” or “hypothetical” universe — is composed only of elements similar to the
observations we have in hand. We thereby lose no efficiency and avoid making unsound
assumptions.

To carry out our procedure in practice: 1) Write down each of the twenty-four weight gains on
a blank index card. We then have one card each for 31, 34, 29, 26, and so on. 2) Shuffle the
twenty-four cards thoroughly, and pick one card. 3) Record the weight gain, and replace the
card. (Recall that we are treating the weight gains as if they come from an infinite universe
— that is, as if the probability of selecting any amount is the same no matter which others
are selected randomly. Another way to say this is to state that each selection is independent
of each other selection. If we did not replace the card before selecting the next weight gain,
the selections would no longer be independent. See Chapter 11 for further discussion of this
issue.) 4) Repeat this process until you have made two sets of 12 observations. 5) Call the
first hand “food A” and the second hand “food B.” Determine the average weight gain for the
two hands, and record it as in Table 24.2. Repeat this procedure many times.

In operational steps:

• Step 1. Write down each observed weight gain on a card, e.g. 31, 34, 29 …
• Step 2. Shuffle and deal a card.
• Step 3. Record the weight and replace the card.
• Step 4. Repeat steps 2 and 3 eleven more times; call this group A.
• Step 5. Repeat steps 2-3 another twelve times; call this group B.
• Step 6. Calculate the mean weight gain of each group.
• Step 7. Subtract the mean of group A from the mean of group B and record. If larger

(more positive) than 3.16 (the difference between the observed means) or more negative
than -3.16, record “more.” Otherwise record “less.”

• Step 8. Repeat this procedure perhaps fifty times, and calculate the proportion “more.”
This estimates the probability sought.

In none of the first ten simulated trials did the difference in the means of the random hands
exceed the observed difference (3.16 pounds, in the top line in the table) between foods A and
B. (The difference between group totals tells the same story and is faster, requiring no division
calculations.)

In the old days before a computer was easily available, I (JLS) would quit making trials
at such a point, confident that a difference in means as great as observed is not likely to
happen by chance. (Using the convenient “multiplication rule” described in Chapter 9, we can
estimate the probability of such an occurrence happening by chance in 10 successive trials as
1
2 ∗ 1

2 ∗ 1
2 ... = 1

2
10 = 1/1024 ≈ .001 = .1 percent, a small chance indeed.) Nevertheless, let us

press on to do 50 trials.
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Table 24.2: Results of fifty random samples for measured pig rations

Trial #

Mean of first
12
observations
(first hand)

Mean of second
12 observations
(second hand) Difference

Greater or less
than observed
difference?

Observed 382 /
12=31.83

1 368 /
12=30.67

357 /
12=29.75

.87 Less

2 364 /
12=30.33

361 /
12=30.08

.25 Less

3 352 /
12=29.33

373 /
12=31.08

(1.75) Less

4 378 /
12=31.50

347 /
12=28.92

2.58 Less

5 365 /
12=30.42

360 /
12=30.00

.42 Less

6 352 /
12=29.33

373 /
12=31.08

(1.75) Less

7 355 /
12=29.58

370 /
12=30.83

(1.25) Less

8 366 /
12=30.50

359 /
12=29.92

.58 Less

9 360 /
12=30.00

365 /
12=30.42

(.42) Less

10 355 /
12=29.58

370 /
12=30.83

(1.25) Less

11 359 /
12=29.92

366 /
12=30.50

(.58) Less

12 369 /
12=30.75

356 /
12=29.67

1.08 ”

13 360 /
12=30.00

365 /
12=30.42

(.42) Less

14 377 /
12=31.42

348 /
12=29.00

2.42 Less

15 365 /
12=30.42

360 /
12=30.00

.42 Less

16 364 /
12=30.33

361 /
12=30.08

.25 Less

17 363 /
12=30.25

362 /
12=30.17

.08 Less
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Trial #

Mean of first
12
observations
(first hand)

Mean of second
12 observations
(second hand) Difference

Greater or less
than observed
difference?

18 365 /
12=30.42

360 /
12=30.00

.42 Less

19 369 /
12=30.75

356 /
12=29.67

1.08 Less

20 369 /
12=30.75

356 /
12=29.67

1.08 Less

21 369 /
12=30.75

356 /
12=29.67

1.08 Less

22 364 /
12=30.33

361 /
12=30.08

.25 Less

23 363 /
12=30.25

362 /
12=30.17

.08 Less

24 363 /
12=30.25

362 /
12=30.17

.08 Less

25 364 /
12=30.33

361 /
12=30.08

.25 Less

26 359 /
12=29.92

366 /
12=30.50

(.58) Less

27 362 /
12=30.17

363 /
12=30.25

(.08) Less

28 362 /
12=30.17

363 /
12=30.25

(.08) Less

29 373 /
12=31.08

352 /
12=29.33

1.75 Less

30 367 /
12=30.58

358 /
12=29.83

.75 Less

31 376 /
12=31.33

349 /
12=29.08

2.25 Less

32 365 /
12=30.42

360 /
12=30.00

.42 Less

33 357 /
12=29.75

368 /
12=30.67

(1.42) Less

34 349 /
12=29.08

376 /
12=31.33

2.25 Less

35 356 /
12=29.67

396 /
12=30.75

(1.08) Less

36 359 /
12=29.92

366 /
12=30.50

(.58) Less
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Trial #

Mean of first
12
observations
(first hand)

Mean of second
12 observations
(second hand) Difference

Greater or less
than observed
difference?

37 372 /
12=31.00

353 /
12=29.42

1.58 Less

38 368 /
12=30.67

357 /
12=29.75

.92 Less

39 344 /
12=28.67

382 /
12=31.81

(3.16) Equal

40 365 /
12=30.42

360 /
12=30.00

.42 Less

41 375 /
12=31.25

350 /
12=29.17

2.08 Less

42 353 /
12=29.42

372 /
12=31.00

(1.58) Less

43 357 /
12=29.75

368 /
12=30.67

(.92) Less

44 363 /
12=30.25

362 /
12=30.17

.08 Less

45 353 /
12=29.42

372 /
12=31.00

(1.58) Less

46 354 /
12=29.50

371 /
12=30.92

(1.42) Less

47 353 /
12=29.42

372 /
12=31.00

(1.58) Less

48 366 /
12=30.50

350 /
12=29.92

.58 Less

49 364 /
12=30.53

361 /
12=30.08

.25 Less

50 370 /
12=30.83

355 /
12=29.58

1.25 Less

Table 24.2 shows fifty trials of which only one (the thirty-ninth) is as “far out” as the observed
samples. These data give us an estimate of the probability that, if the two foods come from
the same universe, a difference this great or greater would occur just by chance. (Compare this
2 percent estimate with the probability of roughly 1 percent estimated with the conventional
t test — a “significance level” of 1 percent.) On the average, the test described in this section
yields a significance level as high as such mathematical-probability tests as the t test — that
is, it is just as efficient — though the tests described in the examples of Section 21.2.8 and
Section 23.3.1 are likely to be less efficient because they convert measured data to ranked or
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classified data.1

It is not appropriate to say that these data give us an estimate of the probability that the foods
“do not come” from the same universe. This is because we can never state a probability that
a sample came from a given universe unless the alternatives are fully specified in advance.2

This example also illustrates how the dispersion within samples affects the difficulty of finding
out whether the samples differ from each other. For example, the average weight gain for food
A was 32 pounds, versus 29 pounds for food B. If all the food A-fed pigs had gained weight
within a range of say 29.9 and 30.1 pounds, and if all the food B-fed pigs had gained weight
within a range of 28.9 and 29.1 pounds — that is, if the highest weight gain in food B had been
lower than the lowest weight gain in food A — then there would be no question that food A
is better, and even fewer observations would have made this statistically conclusive. Variation
(dispersion) is thus of great importance in statistics and in the social sciences. The larger the
dispersion among the observations within the samples, the larger the sample size necessary
to make a conclusive comparison between two groups or reliable estimates of summarization
statistics. (The dispersion might be measured by the mean absolute deviation (the average
absolute difference between the mean and the individual observations, treating both plus and
minus differences as positive), the variance (the average squared difference between the mean
and the observations), the standard deviation (the square root of the variance), the range (the
difference between the smallest and largest observations), or some other device.)

If you are performing your tests by hand rather than using a computer (a good exercise
even nowadays when computers are so accessible), you might prefer to work with the median
instead of the mean, because the median requires less computation. (The median also has the
advantage of being less influenced by a single far-out observation that might be quite atypical;
all measures have their special advantages and disadvantages.) Simply compare the difference
in medians of the twelve-pig resamples to the difference in medians of the actual samples,
just as was done with the means. The only operational difference is to substitute the word
“median” for the word “mean” in the steps listed above. You may need a somewhat larger
number of trials when working with medians, however, for they tend to be less precise than
means.

The Python notebook compares the difference in the sums of the weight gains for the actual
pigs against the difference resulting from two randomly-chosen groups of pigs, using the same

1Technical Note: The test described in this section is non-parametric and therefore makes no assumptions
about the shapes of the distributions, which is good because we would be on soft ground if we assumed
normality in the pig-food case, given the sample sizes. This test does not, however, throw away information
as do the rank and median tests illustrated earlier. And indeed, this test proves to be more powerful than
the other non-parametric tests. After developing this test, I discovered that its general logic follows the
tradition of the “randomization” tests, based on an idea by R.A. Fisher (1935; 1960, chap. III, section
21) and worked out for the two-sample cases by E.J.G. Pitman (1937). But the only earlier mentions of
sampling from the universe of possibilities are in M. Dwass (1957) and J.H. Chung and D. Fraser (1958). I
am grateful to J. Pratt for bringing the latter literature to my attention.

2This short comment is the tip of the iceberg of an argument that has been going on for 200 years among
statisticians. It needs much more discussion to be understandable or persuasive.
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numerical weight gains of individual pigs as were obtained in the actual experiment. If the
differences in average weight gains of the randomly ordered groups are rarely as large as the
difference in weight gains from the actual sets of pigs fed food A-alpha and food B-beta, then
we can conclude that the foods do make a difference in pigs’ weight gains.

Note first that pigs in group A gained a total of 382 pounds while group B gained a total of
344 pounds — 38 fewer. To minimize computations, we will deal with totals like these, not
averages.

First we construct vectors A and B of the weight gains of the pigs fed with the two foods. Then
we combine the two vectors into one long vector and select two groups of 12 randomly and
with replacement (the two rnd.choice commands). Notice we sample with replacement. This
is the bootstrap procedure*, where we simulate new samples by resampling with replacement
from the original sample. We sum the weight gains for the two resamples, and calculate the
difference. We keep track of those differences by storing them in the results array, graph
them on a histogram, and see how many times resample A exceeded resample B by at least
38 pounds, or vice versa (we are testing whether the two are different, not whether food A
produces larger weight gains).

Notebook with data file

As you saw in Note 36, the following notebook reads a data file, so the download link
points to a .zip file containing the notebook and the data file.

Note 59: Notebook: Pig rations via bootstrap

• Download zip with notebook + data file
• Interact

First we need to get the measured data from the data file using the Pandas library:

# Load the Numpy library for arrays.
import numpy as np
# Load the Pandas library for loading and selecting data.
import pandas as pd

We load the file containing the data:

# Read the data file containing pig ration data.
rations_df = pd.read_csv('data/pig_rations.csv')
# Show the first 5 rows.
rations_df.head()
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ration weight_gain
0 A 31
1 A 34
2 A 29
3 A 26
4 A 32

Let us first select the rows containing data for ration B (we will get the rows for ration A
afterwards):

# Select ration B rows.
ration_b_df = rations_df[rations_df['ration'] == 'B']
# Show the first five rows.
ration_b_df.head()

ration weight_gain
12 B 26
13 B 24
14 B 28
15 B 29
16 B 30

Finally for ration B, convert the weights to an array for use in the simulation.

b_weights = np.array(ration_b_df['weight_gain'])
# Show the result.
b_weights

array([26, 24, 28, 29, 30, 29, 31, 29, 32, 26, 28, 32])

Select ration A rows, and get the weights as an array:

ration_a_df = rations_df[rations_df['ration'] == 'A']
a_weights = np.array(ration_a_df['weight_gain'])
# Show the result.
a_weights

array([31, 34, 29, 26, 32, 35, 38, 34, 31, 29, 32, 31])
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We will use the a_weights and b_weights arrays for our simulation. We are going to shuffle
these weights, so we first concatenate the two arrays (see Section 12.15.1) so we can shuffle
them:

both = np.concatenate([a_weights, b_weights])
both

array([31, 34, 29, 26, 32, 35, 38, 34, 31, 29, 32, 31, 26, 24, 28, 29, 30,
29, 31, 29, 32, 26, 28, 32])

Now do the simulation:

import matplotlib.pyplot as plt

# set up the random number generator
rnd = np.random.default_rng()

# Set the number of trials
n_trials = 10_000

# An empty array to store the trial results.
results = np.zeros(n_trials)

# Do 10,000 experiments.
for i in range(n_trials):

# Take a "resample" of 12 with replacement from both and put it in fake_a
fake_a = rnd.choice(both, size=12)
# Likewise to make fake_b
fake_b = rnd.choice(both, size=12)
# Sum the first "resample."
fake_a_sum = np.sum(fake_a)
# Sum the second "resample."
fake_b_sum = np.sum(fake_b)
# Calculate the difference between the two resamples.
fake_diff = fake_a_sum - fake_b_sum
# Keep track of each trial result.
results[i] = fake_diff
# End one experiment, go back and repeat until all trials are complete,
# then proceed.

# Produce a histogram of trial results.
plt.hist(results, bins=25)
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plt.xlabel('Second resample minus first')
plt.title('Distribution difference in sums of resamples')
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From this histogram we see that a very small proportion of the trials produced a difference
between groups as large as that observed (or larger). Python will calculate this for us with
the following code:

# Determine how many of the trials produced a difference between resamples.
count_more = np.sum(results >= 38)
# Likewise for a difference of -38.
count_less = np.sum(results <= -38)
# Add the two together.
k = count_more + count_less
# Divide by number of trials to convert to proportion.
kk = k / n_trials
# Print the result.
print('Proportion of trials with either >=38 or <=-38:', kk)

Proportion of trials with either >=38 or <=-38: 0.0148

End of notebook: Pig rations via bootstrap

measured_rations starts at Note 59.
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24.0.2 Example: Is There a Difference in Liquor Prices Between State-Run and
Privately-Run Systems?

This is an example of testing for differences between means of unequal-sized samples
of measured data.

In the 1960s I (JLS) studied the price of liquor in the sixteen “monopoly” states (where the
state government owns the retail liquor stores) compared to the twenty-six states in which retail
liquor stores are privately owned. (Some states were omitted for technical reasons. And it is
interesting to note that the situation and the price pattern has changed radically since then.)
These data were introduced in the context of a problem in probability in Section 12.15.

Table 24.3 is the same as the matching table in Section 12.15. They show the representative
1961 prices of a fifth of Seagram 7 Crown whiskey in the two sets of states:3

Table 24.3: Whiskey prices by state category

Private Government
4.82 4.65
5.29 4.55
4.89 4.11
4.95 4.15
4.55 4.2
4.9 4.55
5.25 3.8
5.3 4.0
4.29 4.19
4.85 4.75
4.54 4.74
4.75 4.5
4.85 4.1
4.85 4.0
4.5 5.05
4.75 4.2
4.79
4.85
4.79
4.95
4.95
4.75
5.2

3The data are from The Liquor Handbook (1962, p. 68). Eight states are omitted for various reasons. For
more information, see Simon and Simon (1996).
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Private Government
5.1
4.8
4.29

Count 26 16
Mean 4.84 4.35

The economic question that underlay the investigation — having both theoretical and policy
ramifications — is as follows: Does state ownership affect prices? The empirical question is
whether the prices in the two sets of states were systematically different. In statistical terms,
we wish to test the hypothesis that there was a difference between the groups of states related
to their mode of liquor distribution, or whether the observed $.49 differential in means might
well have occurred by happenstance. In other words, we want to know whether the two sub-
groups of states differed systematically in their liquor prices, or whether the observed pattern
could well have been produced by chance variability.

The first step is to examine the two sets of data graphically to see whether there was such a
clear-cut difference between them — of the order of Snow’s data on cholera, or the Japanese
Navy data on beri-beri — that no test was necessary. The separate displays, and then the two
combined together, are shown in Figure 24.3; the answer is not clear-cut and hence a formal
test is necessary.
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Figure 24.3: Whiskey prices by state category

At first I used a resampling permutation test as follows: Assuming that the entire universe
of possible prices consists of the set of events that were observed, because that is all the
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information available about the universe, I wrote each of the forty-two observed state prices
on a separate card. The shuffled deck simulated a situation in which each state has an equal
chance for each price.

On the “null hypothesis” that the two groups’ prices do not reflect different price-setting mech-
anisms, but rather differ only by chance, I then examined how often that simulated universe
stochastically produces groups with results as different as observed in 1961. I repeatedly dealt
groups of 16 and 26 cards, without replacing the cards, to simulate hypothetical monopoly-
state and private-state samples, each time calculating the difference in mean prices.

The probability that the benchmark null-hypothesis universe would produce a difference be-
tween groups as large or larger than observed in 1961 is estimated by how frequently the mean
of the group of randomly-chosen sixteen prices from the simulated state-ownership universe
is less than (or equal to) the mean of the actual sixteen state-ownership prices. If the simu-
lated difference between the randomly-chosen groups was frequently equal to or greater than
observed in 1961, one would not conclude that the observed difference was due to the type of
retailing system because it could well have been due to chance variation.

Here is that procedure as a Python notebook. Compare to the very similar bootstrap procedure
in Section 12.15.

Note 60: Notebook: Permutation test of public and private liquor prices

• Download zip with notebook + data file
• Interact

import numpy as np

rnd = np.random.default_rng()

# Import the plotting library
import matplotlib.pyplot as plt

# Load the data from a data file.
prices_df = pd.read_csv('data/liquor_prices.csv')
# Show this first five rows.
prices_df.head()

state_type price
0 private 4.82
1 private 5.29
2 private 4.89
3 private 4.95
4 private 4.55
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Take all prices from the loaded data file, and convert into an arrays for each category.

# Rows for private prices.
priv_df = prices_df[prices_df['state_type'] == 'private']
# Convert corresponding prices to array.
priv = np.array(priv_df['price'])
# Show the result
priv

array([4.82, 5.29, 4.89, 4.95, 4.55, 4.9 , 5.25, 5.3 , 4.29, 4.85, 4.54,
4.75, 4.85, 4.85, 4.5 , 4.75, 4.79, 4.85, 4.79, 4.95, 4.95, 4.75,
5.2 , 5.1 , 4.8 , 4.29])

# Rows for government prices.
govt_df = prices_df[prices_df['state_type'] == 'government']
# Convert corresponding prices to array.
govt = np.array(govt_df['price'])
# Show the result
govt

array([4.65, 4.55, 4.11, 4.15, 4.2 , 4.55, 3.8 , 4. , 4.19, 4.75, 4.74,
4.5 , 4.1 , 4. , 5.05, 4.2 ])

Calculate actual difference:

actual_diff = np.mean(priv) - np.mean(govt)
actual_diff

np.float64(0.49221153846153953)

Concatenate the private and government values into one array:

# Join the two arrays of data into one array.
both = np.concatenate([priv, govt])
both

array([4.82, 5.29, 4.89, 4.95, 4.55, 4.9 , 5.25, 5.3 , 4.29, 4.85, 4.54,
4.75, 4.85, 4.85, 4.5 , 4.75, 4.79, 4.85, 4.79, 4.95, 4.95, 4.75,
5.2 , 5.1 , 4.8 , 4.29, 4.65, 4.55, 4.11, 4.15, 4.2 , 4.55, 3.8 ,
4. , 4.19, 4.75, 4.74, 4.5 , 4.1 , 4. , 5.05, 4.2 ])
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Do simulation:

n_trials = 10_000

# Fake differences for each trial.
results = np.zeros(n_trials)

# Repeat 10000 simulation trials
for i in range(n_trials):

# Shuffle 42 values to a random order.
shuffled = rnd.permuted(both)

# Take first 26 shuffled values as fake private group
fake_priv = shuffled[:26]

# Remaining values (from position 26 to end, 16 values)
# form the fake government group.
fake_govt = shuffled[26:]

# Find the mean of the "private" group.
p = np.mean(fake_priv)

# Mean of the "govt." group
g = np.mean(fake_govt)

# Difference in the means
diff = p - g

# Keep score of the trials
results[i] = diff

# Graph of simulation results to compare with the observed result.
plt.hist(results, bins=25)
plt.xlabel('Difference in average prices (cents)')
plt.title('Average price difference (Actual difference = '
f'{actual_diff * 100:.0f} cents)');

# Number of trials where fake difference >= actual.
k = np.sum(results >= actual_diff)
kk = k / n_trials

print('Proportion fake differences <= actual_difference:', kk)
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Proportion fake differences <= actual_difference: 0.0001

0.4 0.2 0.0 0.2 0.4
Difference in average prices (cents)

0

200

400

600

800

1000

1200
Average price difference (Actual difference = 49 cents)

End of notebook: Permutation test of public and private liquor prices

liquor_permutation starts at Note 60.

The result — about zero percent of the simulations generated a value as large or larger than the
actual difference — implies that there is a very small probability that two groups with mean
prices as different as were observed would happen by chance if drawn from the universe of 42
observed prices. So we “reject the null hypothesis” and instead find persuasive the proposition
that the type of liquor distribution system influences the prices that consumers pay.4

The logical framework of this resampling version of the permutation test differs greatly from
the formulaic version, which relies on some sophisticated mathematics. The formula-method
alternative would be the Student’s t-test, in which the user simply plugs into an unintuitive
formula and reads the result from a table.

A Python program to handle the liquor problem with an infinite-universe bootstrap distri-
bution simply substitutes the random sampling command rnd.choice for the commands to
do shuffling and splitting above. The results of the bootstrap test are indistinguishable from
those in the permutation version of the program above — see: Section 12.15.

4Various tests indicate that the difference between the groups of states was highly significant. See Simon and
Simon (1996).
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Still another difficult question is whether any hypothesis test is appropriate, because the
states were not randomly selected for inclusion in one group or another, and the results could
be caused by factors other than the liquor system; this applies to both the above methods.
The states constitute the entire universe in which we are interested, rather than being a sample
taken from some larger universe as with a biological experiment or a small survey sample. But
this objection pertains to a conventional test as well as to resampling methods. And a similar
question arises throughout medical and social science — to the two water suppliers between
which John Snow detected vast differences in cholera rates, to rates of lung cancer in human
smokers, to analyses of changes in speeding laws, and so on.

The appropriate question is not whether the units were assigned randomly, however, but
whether there is strong reason to believe that the results are not meaningful because they are
the result of a particular “hidden” variable.

These debates about fundamentals illustrate the unsettled state of statistical thinking about
basic issues. Other disciplines also have their controversies about fundamentals. But in statis-
tics these issues arise as early as the introductory course, because all but the most contrived
problems are shot through with these questions. Instructors and researchers usually gloss over
these matters, as Gigerenzer et al., show ( The Empire of Chance ). Again, because with re-
sampling one does not become immersed in the difficult mathematical techniques that underlie
conventional methods, one is quicker to see these difficult questions, which apply equally to
conventional methods and resampling.

24.0.3 Example: Is there a difference between treatments to prevent low
birthweights?

Next we consider the use of resampling with measured data to test the hypothesis that drug A
prevents low birthweights (Rosner 1995, 291). The data for the treatment and control groups
are shown in Table 24.4.

Table 24.4: Birthweights in clinical trial for drug to prevent low birthweights

Treatment Birthweight
Drug A 6.9
Drug A 7.6
Drug A 7.3
Drug A 7.6
Drug A 6.8
Drug A 7.2
Drug A 8.0
Drug A 5.5
Drug A 5.8
Drug A 7.3
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Treatment Birthweight
Drug A 8.2
Drug A 6.9
Drug A 6.8
Drug A 5.7
Drug A 8.6
Control 6.4
Control 6.7
Control 5.4
Control 8.2
Control 5.3
Control 6.6
Control 5.8
Control 5.7
Control 6.2
Control 7.1
Control 7.0
Control 6.9
Control 5.6
Control 4.2
Control 6.8

The treatment group averaged .82 pounds more than the control group (Table 24.5):

Table 24.5: Mean birthweight per group

Mean birthweight
Control 6.26
Drug A 7.08

Here is a resampling approach to the problem:

1. If the drug has no effect, our best guess about the “universe” of birthweights is that it is
composed of (say) a million each of the observed weights, all lumped together. In other
words, in the absence of any other information or compelling theory, we assume that the
combination of our samples is our best estimate of the universe. Hence let us write each
of the birthweights on a card, and put them into a hat. Drawing them one by one and
then replacing them is the operational equivalent of a very large (but equal) number of
each birthweight.

2. Repeatedly draw two samples of 15 birthweights each, and check how frequently the
observed difference is as large as, or larger than, the actual difference of .82 pounds.
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This is the so-called bootstrap test of the null-hypothesis.

Note 61: Notebook: Bootstrap test of birthweight difference

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Get treatment and control values from data file.
birth_df = pd.read_csv('data/birthweights.csv')
# Birthweidhts for Drug A participants.
treat_df = birth_df[birth_df['Treatment'] == 'Drug A']
# Birthweigts as array.
treat = np.array(treat_df['Birthweight'])
# Control birthweights.
control_df = birth_df[birth_df['Treatment'] == 'Control']
# Birthweigts as array.
control = np.array(control_df['Birthweight'])

# Actual difference.
actual_diff = np.mean(treat) - np.mean(control)
# Show the actual difference.
actual_diff

np.float64(0.8199999999999994)

Proceed with the simulation:

# Concatenate treatment and control arrays.
both = np.concatenate([treat, control])

# Number of trials.
n_trials = 10_000

# Make array to store results for each trial.
results = np.zeros(n_trials)

456

https://resampling-stats.github.io/edition-3-python/notebooks/birthweight_bootstap.zip
https://resampling-stats.github.io/edition-3-python/interact/lab/index.html?path=birthweight_bootstap.ipynb


# Do 10000 simulations
for i in range(n_trials):

# Take a resample of 15 from all birth weights.
fake_treat = rnd.choice(both, size=15)
# Take a second, similar resample.
fake_control = rnd.choice(both, size=15)
# Find the means of the two resamples.
mt = np.mean(fake_treat)
mc = np.mean(fake_control)
# Find the difference between the means of the two resamples.
diff = mt - mc
# Keep score of the result.
results[i] = diff
# End the simulation experiment, go back and repeat

# Produce a histogram of the resample differences
plt.hist(results, bins=25)
plt.title('Null-world distribution of treatment/control difference')
plt.xlabel('Null-world mean treatment - mean control')
# How often did resample differences exceed the observed difference of
# .82?
k = sum(results >= actual_diff)
kk = k / n_trials
print('Proportion null-world differences >= actual difference:', kk)

Proportion null-world differences >= actual difference: 0.0114
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Proceed with the simulation:

End of notebook: Bootstrap test of birthweight difference

birthweight_bootstap starts at Note 61.

Result: only about one percent of the pairs of resamples produced means that differed by as
much as .82. We can conclude that the observed difference is unlikely to have occurred by
chance.

24.0.4 Example: Bootstrap Sampling with Replacement

Efron and Tibshirani (1993, 11) present this as their basic problem illustrating the bootstrap
method: Seven mice were given a new medical treatment intended to improve their survival
rates after surgery, and nine mice were not treated. The numbers of days the treated mice
survived were 94, 38, 23, 197, 99, 16 and 14, whereas the numbers of days the untreated mice
(the control group) survived were 52, 10, 40, 104, 51, 27, 146, 30, and 46. The question we
ask is: Did the treatment prolong survival, or might chance variation be responsible for the
observed difference in mean survival times?

We start by supposing the treatment did NOT prolong survival and that chance variation in
the mice was responsible for the observed difference.

If that is so, then we consider that the two groups came from the same universe. Now we’d
like to know how likely it is that two groups drawn from this common universe would differ as
much as the two observed groups differ.

If we had unlimited time and money, we would seek additional samples in the same way that
we obtained these. Lacking time and money, we create a hypothetical universe that embodies
everything we know about such a common universe. We imagine replicating each sample
element millions of times to create an almost infinite universe that looks just like our samples.
Then we can take resamples from this hypothetical universe and see how they behave.

Even on a computer, creating such a large universe is tedious so we use a shortcut. We replace
each element after we pick it for a resample. That way, our hypothetical (bootstrap) universe
is effectively infinite.

The following procedure will serve:

• Step 1. Calculate the difference between the means of the two observed samples – it’s
30.63 days in favor of the treated mice.

• Step 2. Consider the two samples combined (16 observations) as the relevant universe
to resample from.

• Step 3. Draw 7 hypothetical observations with replacement and designate them “Treat-
ment”; draw 9 hypothetical observations with replacement and designate them “Control.”
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• Step 4. Compute and record the difference between the means of the two samples. **
Step 5.** Repeat steps 2 and 3 perhaps 10000 times. ** Step 6.** Determine how often
the resampled difference exceeds the observed difference of 30.63.

The following notebook follows the above procedure:

Note 62: Notebook: A classic bootstrap example

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

# Set up the random number generator.
rnd = np.random.default_rng()

# Treatment group.
treat = np.array([94, 38, 23, 197, 99, 16, 141])
# control group
control = np.array([52, 10, 40, 104, 51, 27, 146, 30, 46])

# Observed difference in real world.
actual_diff = np.mean(treat) - np.mean(control)

# Set the number of trials.
n_trials = 10_000

# An empty array to store the trials.
results = np.zeros(n_trials)

# U is our universe (Step 2 above)
u = np.concatenate([treat, control])

# step 5 above.
for i in range(n_trials):

# Step 3 above.
fake_treat = rnd.choice(u, size=7)
# Step 3
fake_control = rnd.choice(u, size=9)
# Step 4
mt = np.mean(fake_treat)
# Step 4
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mc = np.mean(fake_control)
# Step 4
diff = mt - mc
# Step 4
results[i] = diff

# Step 6
plt.hist(results, bins=25)
plt.title('Bootstrap distribution of mean differences in survival')
plt.xlabel('Bootstrap mean treatment - mean control')

# Step 6
k = np.sum(results >= actual_diff)
kk = k / n_trials
print('Proportion bootstrap mean difference >= actual difference:', kk)

Proportion bootstrap mean difference >= actual difference: 0.1327

100 75 50 25 0 25 50 75 100
Bootstrap mean treatment - mean control

0

200

400

600

800

1000

Bootstrap distribution of mean differences in survival

End of notebook: A classic bootstrap example

mouse_bootstrap starts at Note 62.

Interpretation: 10000 simulated resamples (of sizes 7 and 9) from a combined universe produced
a difference as big as 30.63 about 13.3 percent of the time. We cannot rule out the possibility
that chance might be responsible for the observed advantage of the treatment group.
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24.0.5 Example: Permutation Sampling Without Replacement

This section discusses at some length the question of when sampling with replacement (the
bootstrap), and sampling without replacement (permutation or “exact” test) are the appropri-
ate resampling methods. The case at hand seems like a clearcut case where the bootstrap is
appropriate. (Note that in this case we draw both samples from a combined universe consisting
of all observations, whether we do so with or without replacement.) Nevertheless, let us see
how the technique would differ if one were to consider that the permutation test is appropriate.
The algorithm would then be as follows (with the steps that are the same as above labeled “a”
and those that are different labeled “b”):

• Step 1a. Calculate the difference between the means of the two observed samples – it’s
30.63 days in favor of the treated mice.

• Step 2a. Consider the two samples combined (16 observations) as the relevant universe
to resample from.

• Step 3b. Draw 7 hypothetical observations without replacement and designate them
“Treatment”; draw the remaining 9 hypothetical observations and designate them “Con-
trol.” (We can do this by shuffling our universe and splitting it into groups by taking
the first 7 and the last 9.)

• Step 4a. Compute and record the difference between the means of the two samples.
• Step 5a. Repeat steps 2 and 3 perhaps 10,000 times
• Step 6a. Determine how often the resampled difference exceeds the observed difference

of 30.63.

Here is the Python notebook:

Note 63: Notebook: Permutation test for mouse survival data

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

# Set up the random number generator.
rnd = np.random.default_rng()

# Treatment group.
treat = np.array([94, 38, 23, 197, 99, 16, 141])
# control group
control = np.array([52, 10, 40, 104, 51, 27, 146, 30, 46])

# Observed difference in real world.
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actual_diff = np.mean(treat) - np.mean(control)

# Set the number of trials.
n_trials = 10_000

# An empty array to store the trials.
results = np.zeros(n_trials)

# U is our universe (Step 2 above)
u = np.concatenate([treat, control])

# step 5 above.
for i in range(n_trials):

# Step 3b above.
shuffled = rnd.permuted(u)
# Step 3b - take the first 7 values.
fake_treat = shuffled[:7]
# Step 3b - take the remaining values.
fake_control = shuffled[7:]
# Step 4
mt = np.mean(fake_treat)
# Step 4
mc = np.mean(fake_control)
# Step 4
diff = mt - mc
# Step 4
results[i] = diff

# Step 6
plt.hist(results, bins=25)
plt.title('Permutation distribution of mean differences in survival')
plt.xlabel('Permutation mean treatment - mean control')

# Step 6
k = np.sum(results >= actual_diff)
kk = k / n_trials
print('Proportion permutation mean difference >= actual difference:', kk)

Proportion permutation mean difference >= actual difference: 0.1425
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End of notebook: Permutation test for mouse survival data

mouse_permutation starts at Note 63.

Interpretation: 10000 simulated resamples (of sizes 7 and 9) from a combined universe produced
a difference as big as 30.63 about 14.2 percent of the time. We therefore should not rule out
the possibility that chance might be responsible for the observed advantage of the treatment
group.

24.1 Differences among four means

24.1.1 Example: differences among four pig rations

Test for Differences Among Means of More Than Two Samples of Measured
Data.

In the examples of Section 21.2.1 and Section 21.2.2 we investigated whether or not the results
shown by a single sample are sufficiently different from a null (benchmark) hypothesis so that
the sample is unlikely to have come from the null-hypothesis benchmark universe. In the
examples of Section 21.2.5, Section 23.3.1, and Section 24.0.1 we then investigated whether or
not the results shown by two samples suggest that both had come from the same universe, a
universe that was assumed to be the composite of the two samples. Now, as in Section 23.2.1,
we investigate whether or not several samples come from the same universe, except that now
we work with measured data rather than with counted data.
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If one experiments with each of 100 different pig foods on twelve pigs, some of the foods
will show much better results than will others just by chance, just as one family in sixteen is
likely to have the very “high” number of 4 daughters in its first four children. Therefore, it is
wrong reasoning to try out the 100 pig foods, select the food that shows the best results, and
then compare it statistically with the average (sum) of all the other foods (or worse, with the
poorest food). With such a procedure and enough samples, you will surely find one (or more)
that seems very atypical statistically. A bridge hand with 12 or 13 spades seems very atypical,
too, but if you deal enough bridge hands you will sooner or later get one with 12 or 13 spades
— as a purely chance phenomenon, dealt randomly from a standard deck. Therefore we need
a test that prevents our falling into such traps. Such a test usually operates by taking into
account the differences among all the foods that were tried.

The method of Section 24.0.1 can be extended to handle this problem. Assume that four foods
were each tested on twelve pigs. The weight gains in pounds for the pigs fed on foods A and
B were as before. Table 24.6 has the weight gains for foods C and D. (Compare these with
the weight gains for foods A and B in Table 24.1).

Table 24.6: Measured data for pig rations C and D

ration weight_gain
25 C 30
26 C 30
27 C 32
28 C 31
29 C 29
30 C 27
31 C 25
32 C 30
33 C 31
34 C 32
35 C 34
36 C 33
37 D 32
38 D 25
39 D 31
40 D 26
41 D 32
42 D 27
43 D 28
44 D 29
45 D 29
46 D 28
47 D 23
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ration weight_gain
48 D 25

Now construct a benchmark universe of forty-eight index cards, one for each weight gain. Then
deal out sets of four hands randomly. More specifically:

• Step 1. Constitute a universe of the forty-eight observed weight gains in the four
samples, writing the weight gains on cards.

• Step 2. Draw four groups of twelve weight gains, with replacement, since we are draw-
ing from a hypothesized infinite universe in which consecutive draws are independent.
Determine whether the difference between the lowest and highest group means is as large
or larger than the observed difference. If so write “yes,” otherwise “no.”

• Step 3. Repeat step 2 fifty times.
• Step 4. Count the trials in which the differences between the simulated groups with the

highest and lowest means are as large or larger than the differences between the means
of the highest and lowest observed samples. The proportion of such trials to the total
number of trials is the probability that all four samples would differ as much as do the
observed samples if they (in technical terms) come from the same universe.

The problem, as handled by the steps given above, is quite similar to the way we handled the
example in Section 23.2.2, except that the data are measured (in pounds of weight gain) rather
than simply counted (the number of rehabilitations).

Instead of working through a program for the procedure outlined above, let us consider a
different approach to the problem — computing the difference between each pair of foods, six
differences in all, converting all minus (-) signs to (+) differences (taking the absolute value).
Then we can total the six absolute differences, and compare the total with the sum of the six
absolute differences in the observed sample. The proportion of the resampling trials in which
the observed sample sum is equaled or exceeded by the sum of the differences in the trials is
the probability that the observed samples would differ as much as they do if they come from
the same universe.5

One naturally wonders whether this latter test statistic is better than the range, as discussed
above. It would seem obvious that using the information contained in all four samples should
increase the precision of the estimate. And indeed it is so, as you can confirm for yourself by
comparing the results of the two approaches. But in the long run, the estimate provided by

5Technical Note: Computing the sum of squared differences renders this test superficially more similar to
the analysis of variance but will not alter the results. This test has not been discussed in the statistical
literature, to my knowledge, except perhaps for a faint suggestion at the end of Chung and Fraser (1958).
This and the two-sample test can easily be performed with canned computer programs as well as Python.
In addition to their advantages of nonparametricity, they are equally efficient and vastly easier to teach and
to understand than the t-test and the analysis of variance. Therefore, we believe that these tests should be
“treatments of choice,” as the doctors say.
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the two approaches would be much the same. That is, there is no reason to think that one
or another of the estimates is biased. However, successive samples from the population would
steady down faster to the true value using the four-group-based estimate than they would
using the range. That is, the four-group-based estimate would require a smaller sample of
pigs.

Is there reason to prefer one or the other approach from the point of view of some decision
that might be made? One might think that the range procedure throws light on which one of
the foods is best in a way that the four-group-based approach does not. But this is not correct.
Both approaches answer this question, and only this question: Are the results from the four
foods likely to have resulted from the same “universe” of weight gains or not? If one wants
to know whether the best food is similar to, say, all the other three, the appropriate approach
would be a two-sample approach similar to various two-sample examples discussed earlier. (It
would be still another question to ask whether the best food is different from the worst. One
would then use a procedure different from either of those discussed above.)

If the foods cost the same, one would not need even a two-sample analysis to decide which
food to feed. Feed the one whose results are best in the experiment, without bothering to
ask whether it is “really” the best; you can’t go wrong as long as it doesn’t cost more to
use it. (One could inquire about the probability that the food yielding the best results in
the experiment would attain those results by chance even if it was worse than the others by
some stipulated amount, but pursuing that line of thought may be left to the student as an
exercise.)

In the notebook below, we want a measure of how the groups differ. The obvious first step is
to add up the total weight gains for each group (Table 24.7):

Table 24.7: Weight gain sum per group

Sum of weight gains
A 382
B 344
C 364
D 335

The next step is to calculate the differences between all the possible combinations of groups.

differences = np.array([382 - 344, 382 - 364, 382 - 335,
344 - 364, 344 - 335, 364 - 335])

differences

array([ 38, 18, 47, -20, 9, 29])
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24.2 Using Squared Differences

Here we face a choice. We could work with the absolute differences — that is, the results of the
subtractions — treating each result as a positive number even if it is negative. We have seen
this approach before. Therefore let us now take the opportunity of showing another approach.
Instead of working with the absolute differences, we square each difference, and then sum the
squares.

squared_differences = differences ** 2
squared_differences

array([1444, 324, 2209, 400, 81, 841])

sum_sq_d = np.sum(squared_differences)
sum_sq_d

np.int64(5299)

Squaring arrays squares each element of the array (see Section 16.7.1):

An advantage of working with the squares is that they are positive — a negative number
squared is positive — which is convenient. Additionally, conventional statistics works mainly
with squared quantities, and therefore it is worth getting familiar with that point of view. The
squared differences in this case add up to 5299.

Using Python, we shuffle all the weight gains together, select four random groups, and deter-
mine whether the sum of squared differences in the resample equal or exceed 5299. If they do
so with regularity, then we conclude that the observed differences could easily have occurred
by chance.

With the np.concatenate func, we string the four arrays into a single array called
all_weights. After shuffling (using rnd.permuted the 48-pig weight-gain array all_weights
into shuffled, we split shuffled into four randomized samples. And we compute the squared
differences between the pairs of groups and sum the squared differences just as we did above
for the observed groups.

Last, we examine how often the simulated-trials data produce differences among the groups
as large as (or larger than) the actually observed data — 5299.

Note 64: Notebook: Sum of squared differences for pig rations

• Download zip with notebook + data file
• Interact
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import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Set up the random number generator.
rnd = np.random.default_rng()

# Load data file.y
rations_df = pd.read_csv('data/pig_rations.csv')
# Show the first five rows.
rations_df.head()

ration weight_gain
0 A 31
1 A 34
2 A 29
3 A 26
4 A 32

# Get arrays for each ration.
# A
a_rows = rations_df[rations_df['ration'] == 'A']
a_weights = np.array(a_rows['weight_gain'])
# B
b_rows = rations_df[rations_df['ration'] == 'B']
b_weights = np.array(b_rows['weight_gain'])
# C
c_rows = rations_df[rations_df['ration'] == 'C']
c_weights = np.array(c_rows['weight_gain'])
# D
d_rows = rations_df[rations_df['ration'] == 'D']
d_weights = np.array(d_rows['weight_gain'])
# Concatenate into one long array.
all_weights = np.concatenate([a_weights, b_weights, c_weights, d_weights])
# Show the concatenated array.
all_weights

array([31, 34, 29, 26, 32, 35, 38, 34, 31, 29, 32, 31, 26, 24, 28, 29, 30,
29, 31, 29, 32, 26, 28, 32, 30, 30, 32, 31, 29, 27, 25, 30, 31, 32,
34, 33, 32, 25, 31, 26, 32, 27, 28, 29, 29, 28, 23, 25])
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n_trials = 10_000

# An array to store the result of each trial.
results = np.zeros(n_trials)

# Do 10000 trials
for i in range(n_trials):

# Shuffle all the weight gains.
shuffled = rnd.permuted(all_weights)
# Split into 4 now random samples.
fake_a = shuffled[:12]
fake_b = shuffled[12:24]
fake_c = shuffled[24:36]
fake_d = shuffled[36:]
# Sum the weight gains for the 4 resamples.
sum_a = np.sum(fake_a)
sum_b = np.sum(fake_b)
sum_c = np.sum(fake_c)
sum_d = np.sum(fake_d)
# Find the differences between all the possible pairs of resamples.
a_b = sum_a - sum_b
a_c = sum_a - sum_c
a_d = sum_a - sum_d
b_c = sum_b - sum_c
b_d = sum_b - sum_d
c_d = sum_c - sum_d
# Put the differences into an array.
fake_diffs = np.array([a_b, a_c, a_d, b_c, b_d, c_d])
# Square them to give six squared differences.
sq_fake_diffs = fake_diffs ** 2
# Sum the squares.
sum_sq_fake_diffs = np.sum(sq_fake_diffs)
# Keep track of the total for each trial.
results[i] = sum_sq_fake_diffs
# End one trial, go back and repeat until 10000 trials are complete.

# Produce a histogram of the trial results.
plt.hist(results, bins=25)
plt.title('Null distribution of sum of squared differences')
plt.xlabel('Sum of squared differences in null world')

# Find out how many trials produced differences among groups as great as
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# or greater than those observed.
k = np.sum(results >= 5299)
# Convert to a proportion.
kk = k / n_trials
# Print the result.
print('Number of sum of squared differences >= 5299:', kk)

Number of sum of squared differences >= 5299: 0.0052
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End of notebook: Sum of squared differences for pig rations

squared_rations starts at Note 64.

We find that our observed sum of squares — 5299 — was equaled or exceeded by randomly-
drawn sums of squares in only 0.5 percent of our trials. We conclude that the four treatments
are likely not all similar.

24.3 Exercises

Solutions for problems may be found in Appendix A.
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24.3.1 Exercise: paired differences

The data shown in Table 24.8 might be data for the outcomes of two different mechanics,
showing the length of time until the next overhaul is needed for nine pairs of similar vehicles.
Or they could be two readings made by different instruments on the same sample of rock. In
fact, they represent data for two successive tests for depression on a version of the Hamilton
Depression Scale before and after drug therapy.6

Table 24.8: Hamilton Depression Scale Factor IV Values

Patient # Score before Score after
1 1.83 0.878
2 0.50 0.647
3 1.62 0.598
4 2.48 2.050
5 1.68 1.060
6 1.88 1.290
7 1.55 1.060
8 3.06 3.140
9 1.30 1.290

The task is to perform a test that will help decide whether there is a difference in the depression
scores at the two visits (or the performances of the two mechanics). Perform both a bootstrap
test and a permutation test, and give some reason for preferring one to the other in principle.
How much do they differ in practice? (For this exercise, assume that we can treat the before
and after scores as two different and independent samples and ignore the pairing between the
before and after scores).

Here’s a notebook to get you started:

6The data are the contents of Hollander, Wolfe, and Chicken (2013), Table 3.1. Quoting from the description
there:

The data in Table 3.1 are a portion of the data obtained by Salsburg (1970). These data,
based on nine patients who received tranquilizer, were taken from a double-blind clinical trial
involving two tranquilizers. The measure used was the Hamilton (1960) depression scale factor
IV (the “suicidal” factor). The X (pre) was obtained at the first patient visit after initiating
therapy, whereas the (post) value was obtained at the second visit after initiation of therapy.

The bibliography entry for “Salsburg (1970)” is “Personal communication (with the cooperation of Pfizer
and co, Groton, Conn.)”.

We could not help but notice that Hamilton (1960) did not call his fourth factor “suicidal”, or anything
else. He writes: “It is difficult to attach any label to the third and fourth factors, as they do not bring any
clinical pattern to mind.”
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Note 65: Notebook: Paired differences exercise

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

rnd = np.random.default_rng()

df = pd.read_csv('data/hamilton.csv')
before = np.array(df['score_before'])
after = np.array(df['score_after'])

# Your code here.

End of notebook: Paired differences exercise

paired_differences starts at Note 65.

See Section A.1 for a solution.

24.3.2 Exercise: seatbelt proportions

Thirty-six of 72 (.5) taxis surveyed in Pittsburgh had visible seatbelts. Seventy-seven of 129
taxis in Chicago (.597) had visible seatbelts. Calculate a confidence interval for the difference
in proportions, estimated at -.097. (Source: Peskun, Peter H., “A New Confidence Interval
Method Based on the Normal Approximation for the Difference of Two Binomial Probabilities,”
Journal of the American Statistical Association , 6/93 p. 656).

For solution, see Section A.2}
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25 General Procedures for Testing Hypotheses

25.1 Introduction

The previous chapters have presented procedures for making statistical inferences that apply to
both testing hypotheses and constructing confidence intervals: This chapter focuses on specific
procedures for testing hypotheses.

‘The general idea in testing hypotheses is to ask: Is there some other universe which might
well have produced the observed sample? So we consider alternative hypotheses. This is a
straightforward exercise in probability, asking about behavior of one or more universes. The
choice of another universe(s) to examine depends upon purposes and other considerations.

25.2 Canonical question-and-answer procedure for testing
hypotheses

25.3 Skeleton procedure for testing hypotheses

Akin to skeleton procedure for questions in probability and confidence intervals
shown elsewhere

The following series of questions will be repeated below in the context of a specific inference.

What is the question? What is the purpose to be served by answering the question?

Is this a “probability” or a “statistics” question?

Assuming the Question is a Statistical Inference Question

What is the form of the statistics question?

Hypothesis test, or confidence interval, or other inference? One must first decide whether the
conceptual-scientific question is of the form a) a test about the probability that some sample
is likely to happen by chance rather than being very surprising (a test of a hypothesis), or b)
a question about the accuracy of the estimate of a parameter of the population based upon
sample evidence (a confidence interval):

Assuming the Question Concerns Testing Hypotheses
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Will you state the costs and benefits of various outcomes, perhaps in the form of a “loss
function”? If “yes,” what are they?

How many samples of data have been observed?

One, two, more than two?

What is the description of the observed sample(s)?

Raw data?

Which characteristic(s) (parameters) of the population are of interest to you?

What are the statistics of the sample(s) that refer to this (these) characteristics(s) in which
you are interested?

What comparison(s) to make?

Samples to each other?

Sample to particular universe(s)? If so, which?

What is the benchmark (null) universe?

This may include presenting the raw data and/or such summary statistics as the computed
mean, median, standard deviation, range, interquartile range, other:

If there is to be a Neyman-Pearson-type alternative universe, what is it? (In most cases the
answer to this technical question is “no.”)

Which symbols for the observed entities?

Discrete or continuous?

What values or ranges of values?

Which sample(s) do you wish to compare to which, or to the null universe (and perhaps to the
alternative universe)? (Answer: samples the same size as has been observed)

[Here one may continue with the conventional method, using perhaps a t or f or chi-square
test or whatever: Everything up to now is the same whether continuing with resampling or
with standard parametric test.]

What procedure will be used to produce the resampled entities?

Randomly drawn?

Simple (single step) or complex (multiple “if” drawings)?

What procedure to produce resample?

Which universe will you draw them from? With or without replacement?

What size resamples? Number of resample trials?
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What to record as outcome of each resample trial?

Mean, median, or whatever of resample?

Classifying the outcomes

What is the criterion of significance to be used in evaluating the results of the test?

Stating the distribution of results

Graph of each statistic recorded — occurrences for each value.

Count the outcomes that exceed criterion and divide by number of trials.

25.4 An example: can the bio-engineer increase the female calf
rate?

The question. (from (Hodges Jr and Lehmann 1970, 310): Female calves are more valuable
than male calves. A bio-engineer claims to have a method that can produce more females.
He tests the procedure on ten of your pregnant cows, and the result is nine females. Should
you believe that his method has some effect? That is, what is the probability of a result this
surprising occurring by chance?

The purpose: Female calves are more valuable than male.

Inference? Yes.

Test of hypothesis? Yes.

Will you state the costs and benefits of various outcomes (or a loss function)? We need only
say that the benefits of a method that works are very large, and if the results are promising,
it is worth gathering more data to confirm results.

How many samples of data are part of the significance test? One

What is the size of the first sample about which you wish to make significance statements?
Ten.

What comparison(s) to make? Compare sample to benchmark universe.

What is the benchmark universe that embodies the null hypothesis? 50-50 female, or 100/206
female.

If there is to be a Neyman-Pearson alternative universe, what is it? None.

Which symbols for the observed entities? Balls in bucket, or numbers.

What values or ranges of values? 0-1, (1-100), or 101-206.

Finite or infinite? Infinite.
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Which sample(s) do you wish to compare to which, or to the null universe (and perhaps to the
alternative universe)? Ten calves compared to universe.

What procedure to produce entities? Sampling with replacement,

Simple (single step) or complex (multiple “if” drawings)? One can think of it either way.

What to record as outcome of each resample trial? The proportion (or number) of females.

What is the criterion to be used in the test? The probability that in a sample of ten calves,
nine (or more) females would be drawn by chance from the benchmark universe of half females.
(Or frame in terms of a significance level.)

“One-tail” or “two-tail” test? One tail, because the farmer is only interested in females: Finding
a large proportion of males would not be of interest, and would not cause one to reject the
null hypothesis.

Computation of the probability sought. The actual computation of probability may be done
with several formulaic or sample-space methods, and with several resampling methods: I will
first show a resampling method and then several conventional methods. The following material,
which allows one to compare resampling and conventional methods, is more germane to the
earlier explication of resampling taken altogether in earlier chapters than it is to the theory of
hypothesis tests discussed in this chapter, but it is more expedient to present it here.

25.5 Computation of Probabilities with Resampling

We can do the problem by hand as follows:

1. Constitute a bucket with either one blue and one pink ball, or 106 blue and 100 pink
balls.

2. Draw ten balls with replacement, count pinks, and record.
3. Repeat step (2) say 400 times.
4. Calculate proportion of results with 9 or 10 pinks.

Or, we can take advantage of the speed and efficiency of the computer as follows:

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

n = 10000

females = np.zeros(n)
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for i in range(n):
samp = rnd.choice(['female', 'male'], size=10, replace=True)
females[i] = np.sum(samp == 'female')

plt.hist(females, bins='auto')

k = np.sum(females >= 9)
kk = k / n
print('Proportion with >= 9 females:', kk)

Proportion with >= 9 females: 0.0127
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This outcome implies that there is roughly a one percent chance that one would observe 9 or
10 female births in a single sample of 10 calves if the probability of a female on each birth is .5.
This outcome should help the decision-maker decide about the plausibility of the bio-engineer’s
claim to be able to increase the probability of female calves being born.

25.6 Conventional methods

25.6.1 The Sample Space and First Principles

Assume for a moment that our problem is a smaller one and therefore much easier — the
probability of getting two females in two calves if the probability of a female is .5. One could
then map out what mathematicians call the “sample space,” a technique that (in its simplest
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form) assigns to each outcome a single point, and find the proportion of points that correspond
to a “success.” We list all four possible combinations — FF, FM, MF, MM. Now we look at
the ratio of the number of combinations that have 2 females to the total, which is 1/4. We
may then interpret this probability.

We might also use this method for (say) five female calves in a row. We can make a list of possi-
bilities such as FFFFF, MFFFF, MMFFF, MMMFFF … MFMFM … MMMMM. There will be
2*2*2*2*2 = 32 possibilities, and 64 and 128 possibilities for six and seven calves respectively.
But when we get as high as ten calves, this method would become very troublesome.

25.6.2 Sample Space Calculations

For two females in a row, we could use the well known, and very simple, multiplication rule;
we could do so even for ten females in a row. But calculating the probability of nine females
in ten is a bit more complex.

25.6.3 Pascal’s Triangle

One can use Pascal’s Triangle to obtain binomial coefficients for p = .5 and a sample size of 10,
focusing on those for 9 or 10 successes. Then calculate the proportion of the total cases with 9
or 10 “successes” in one direction, to find the proportion of cases that pass beyond the criterion
of 9 females. The method of Pascal’s Triangle requires more complete understanding of the
probabilistic system than does the resampling simulation described above because Pascal’s
Triangle requires that one understand the entire structure; simulation requires only that you
follow the rules of the model.

25.6.4 The Quincunx

The quincunx — a device that filters tiny balls through a set of bumper points not unlike a
pinball machine, mentioned here simply for completeness — is more a simulation method than
theoretical, but it may be considered “conventional.” Hence, it is included here.

25.6.5 Table of Binomial Coefficients

Pascal’s Triangle becomes cumbersome or impractical with large numbers — say, 17 females of
20 births — or with probabilities other than .5. One might produce the binomial coefficients
by algebraic multiplication, but that, too, becomes tedious even with small sample sizes. One
can also use the pre-computed table of binomial coefficients found in any standard text. But
the probabilities for n = 10 and 9 or 10 females are too small to be shown.
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25.6.6 Binomial Formula

For larger sample sizes, one can use the binomial formula. The binomial formula gives no
deeper understanding of the statistical structure than does the Triangle (but it does yield a
deeper understanding of the pure mathematics). With very large numbers, even the binomial
formula is cumbersome.

25.6.7 The Normal Approximation

When the sample size becomes too large for any of the above methods, one can then use
the Normal approximation, which yields results close to the binomial (as seen very nicely
in the output of the quincunx). But use of the Normal distribution requires an estimate of
the standard deviation, which can be derived either by formula or by resampling. (See a
more extended parallel discussion in Chapter 27 on confidence intervals for the Bush-Dukakis
comparison.)

The desired probability can be obtained from the Z formula and a standard table of the Normal
distribution found in every elementary text.

The Z table can be made less mysterious if we generate it with simulation, or with graph paper
or Archimedes’ method, using as raw material (say) five “continuous” (that is, non-binomial)
distributions, many of which are skewed: 1) Draw samples of (say) 50 or 100. 2) Plot the
means to see that the Normal shape is the outcome. Then 3) standardize with the standard
deviation by marking the standard deviations onto the histograms.

The aim of the above exercise and the heart of the conventional parametric method is to
compare the sample result — the mean — to a standardized plot of the means of samples
drawn from the universe of interest to see how likely it is that that universe produces means
deviating as much from the universe mean as does our observed sample mean. The steps are:

1. Establish the Normal shape — from the exercise above, or from the quincunx or Pascal’s
Triangle or the binomial formula or the formula for the Normal approximation or some
other device.

2. Standardize that shape in standard deviations.
3. Compute the Z score for the sample mean — that is, its deviation from the universe

mean in standard deviations.
4. Examine the Normal (or really, tables computed from graph paper, etc.) to find the

probability of a mean deviating that far by chance.

This is the canon of the procedure for most parametric work in statistics. (For some small
samples, accuracy is improved with an adjustment.)
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25.7 Choice of the benchmark universe1

In the example of the ten calves, the choice of a benchmark universe — a universe that (on
average) produces equal proportions of males and females — seems rather straightforward and
even automatic, requiring no difficult judgments. But in other cases the process requires more
judgments.

Let’s consider another case where the choice of a benchmark universe requires no difficult
judgments. Assume the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) takes
a very large sample — say, 20,000 persons — and finds a 10 percent unemployment rate. At
some later time another but smaller sample is drawn — 2,000 persons — showing an 11 percent
unemployment rate. Should BLS conclude that unemployment has risen, or is there a large
chance that the difference between 10 percent and 11 percent is due to sample variability?
In this case, it makes rather obvious sense to ask how often a sample of 2,000 drawn from a
universe of 10 percent unemployment (ignoring the variability in the larger sample) will be as
different as 11 percent due solely to sample variability? This problem differs from that of the
calves only in the proportions and the sizes of the samples.

Let’s change the facts and assume that a very large sample had not been drawn and only a
sample of 2,000 had been taken, indicating 11 percent unemployment. A policy-maker asks the
probability that unemployment is above ten percent. It would still seem rather straightforward
to ask how often a universe of 10 percent unemployment would produce a sample of 2000 with
a proportion of 11 percent unemployed.

Still another problem where the choice of benchmark hypothesis is relatively straightforward:
Say that BLS takes two samples of 2000 persons a month apart, and asks whether there is a
difference in the results. Pooling the two samples and examining how often two samples drawn
from the pooled universe would be as different as observed seems obvious.

One of the reasons that the above cases — especially the two-sample case — seem so clear-cut
is that the variance of the benchmark hypothesis is not an issue, being implied by the fact
that the samples deal with proportions. If the data were continuous, however, this issue would
quickly arise. Consider, for example, that the BLS might take the same sorts of samples and
ask unemployed persons the lengths of time they had been unemployed. Comparing a small
sample to a very large one would be easy to decide about. And even comparing two small
samples might be straightforward — simply pooling them as is.

But what about if you have a sample of 2,000 with data on lengths of unemployment spells
with a mean of 30 days, and you are asked the probability that it comes from a universe with
a mean of 25 days? Now there arises the question about the amount of variability to assume
for that benchmark universe. Should it be the variability observed in the sample? That is
probably an overestimate, because a universe with a smaller mean would probably have a

1This is one of many issues that Peter Bruce first raised, and whose treatment here reflects back-and-forth
discussion between us.
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smaller variance, too. So some judgment is required; there cannot be an automatic “objective”
process here, whether one proceeds with the conventional or the resampling method.

The example of the comparison of liquor retailing systems in Section 24.0.2 provides more
material on this subject.

25.8 Why is statistics — and hypothesis testing — so difficult?

Why is statistics such a difficult subject? The aforegoing procedural outline provides a window
to the explanation. Hypothesis testing — as is also true of the construction of confidence
intervals (but unlike simple probability problems) — involves a very long chain of reasoning,
perhaps longer than in any other realm of systematic thinking. Furthermore, many decisions
in the process require judgment that goes beyond technical analysis. All this emerges as one
proceeds through the skeleton procedure above with any specific example.

(Bayes’ rule also is very difficult intuitively, but that probably is a result of the twists and
turns required in all complex problems in conditional probability. Decision-tree analysis is
counter-intuitive, too, probably because it starts at the end instead of the beginning of the
story, as we are usually accustomed to doing.)
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26 Confidence Intervals, Part 1: Assessing the
Accuracy of Samples

26.1 Introduction

This chapter discusses how to assess the accuracy of a point estimate of the mean, median, or
other statistic of a sample. We want to know: How close is our estimate of (say) the sample
mean likely to be to the population mean? The chapter begins with an intuitive discussion
of the relationship between a) a statistic derived from sample data, and b) a parameter of a
universe from which the sample is drawn. Then we discuss the actual construction of confidence
intervals using two different approaches which produce the same numbers though they have
different logic. The following chapter shows illustrations of these procedures.

The accuracy of an estimate is a hard intellectual nut to crack, so hard that for hundreds of
years statisticians and scientists wrestled with the problem with little success; it was not until
the last century or two that much progress was made. The kernel of the problem is learning
the extent of the variation in the population. But whereas the sample mean can be used
straightforwardly to estimate the population mean, the extent of variation in the sample does
not directly estimate the extent of the variation in the population, because the variation differs
at different places in the distribution, and there is no reason to expect it to be symmetrical
around the estimate or the mean.

The intellectual difficulty of confidence intervals is one reason why they are less prominent in
statistics literature and practice than are tests of hypotheses (though statisticians often favor
confidence intervals). Another reason is that tests of hypotheses are more fundamental for pure
science because they address the question that is at the heart of all knowledge-getting: “Should
these groups be considered different or the same ?” The statistical inference represented by
confidence limits addresses what seems to be a secondary question in most sciences (though not
in astronomy or perhaps physics): “How reliable is the estimate?” Still, confidence intervals
are very important in some applied sciences such as geology — estimating the variation in
grades of ores, for example — and in some parts of business and industry.

Confidence intervals and hypothesis tests are not disjoint ideas. Indeed, hypothesis testing of
a single sample against a benchmark value is (in all schools of thought, I believe) operationally
identical with the most common way (Approach 1 below) of constructing a confidence interval
and checking whether it includes that benchmark value. But the underlying reasoning is
different for confidence limits and hypothesis tests.
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The logic of confidence intervals is on shakier ground, in my judgment, than that of hypothesis
testing, though there are many thoughtful and respected statisticians who argue that the logic
of confidence intervals is better grounded and leads less often to error.

Confidence intervals are considered by many to be part of the same topic as estimation, being
an estimation of accuracy, in their view. And confidence intervals and hypothesis testing are
seen as sub-cases of each other by some people. Whatever the importance of these distinctions
among these intellectual tasks in other contexts, they need not concern us here.

26.2 Estimating the accuracy of a sample mean

If one draws a sample that is very, very large — large enough so that one need not worry
about sample size and dispersion in the case at hand — from a universe whose characteristics
one knows, one then can deduce the probability that the sample mean will fall within a given
distance of the population mean. Intuitively, it seems as if one should also be able to reverse
the process — to infer something about the location of the population mean from the sample
mean. But this inverse inference turns out to be a slippery business indeed.

Let’s put it differently: It is all very well to say — as one logically may — that on average the
sample mean (or other point estimator) equals a population parameter in most situations.

But what about the result of any particular sample? How accurate or inaccurate an estimate
of the population mean is the sample likely to produce?

Because the logic of confidence intervals is subtle, most statistics texts skim right past the
conceptual difficulties, and go directly to computation. Indeed, the topic of confidence intervals
has been so controversial that some eminent statisticians refuse to discuss it at all. And when
the concept is combined with the conventional algebraic treatment, the composite is truly
baffling; the formal mathematics makes impossible any intuitive understanding. For students,
“pluginski” is the only viable option for passing exams.

With the resampling method, however, the estimation of confidence intervals is easy. The
topic then is manageable though subtle and challenging — sometimes pleasurably so. Even
beginning undergraduates can enjoy the subtlety and find that it feels good to stretch the
brain and get down to fundamentals.

One thing is clear: Despite the subtlety of the topic, the accuracy of estimates must be dealt
with, one way or another.

I hope the discussion below resolves much of the confusion of the topic.
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26.3 The logic of confidence intervals

To preview the treatment of confidence intervals presented below: We do not learn about
the reliability of sample estimates of the mean (and other parameters) by logical inference
from any one particular sample to any one particular universe, because this cannot be done
in principle. Instead, we investigate the behavior of various universes in the neighborhood of
the sample, universes whose characteristics are chosen on the basis of their similarity to the
sample. In this way the estimation of confidence intervals is like all other statistical inference:
One investigates the probabilistic behavior of one or more hypothesized universes that are
implicitly suggested by the sample evidence but are not logically implied by that evidence.

The examples worked in the following chapter help explain why statistics is a difficult subject.
The procedure required to transit successfully from the original question to a statistical prob-
ability, and then through a sensible interpretation of the probability, involves a great many
choices about the appropriate model based on analysis of the problem at hand; a wrong choice
at any point dooms the procedure. The actual computation of the probability — whether
done with formulaic probability theory or with resampling simulation — is only a very small
part of the procedure, and it is the least difficult part if one proceeds with resampling. The
difficulties in the statistical process are not mathematical but rather stem from the hard clear
thinking needed to understand the nature of the situation and to ascertain the appropriate
way to model it.

Again, the purpose of a confidence interval is to help us assess the reliability of a statistic of the
sample — for example, its mean or median — as an estimator of the parameter of the universe.
The line of thought runs as follows: It is possible to map the distribution of the means (or
other such parameter) of samples of any given size (the size of interest in any investigation
usually being the size of the observed sample) and of any given pattern of dispersion (which
we will assume for now can be estimated from the sample) that a universe in the neighborhood
of the sample will produce. For example, we can compute how large an interval to the right
and left of a postulated universe’s mean is required to include 45 percent of the samples on
either side of the mean.

What cannot be done is to draw conclusions from sample evidence about the nature of the
universe from which it was drawn, in the absence of some information about the set of universes
from which it might have been drawn. That is, one can investigate the behavior of one or more
specified universes, and discover the absolute and relative probabilities that the given specified
universe(s) might produce such a sample. But the universe(s) to be so investigated must be
specified in advance (which is consistent with the Bayesian view of statistics). To put it
differently, we can employ probability theory to learn the pattern(s) of results produced by
samples drawn from a particular specified universe, and then compare that pattern to the
observed sample. But we cannot infer the probability that that sample was drawn from any
given universe in the absence of knowledge of the other possible sources of the sample. That is
a subtle difference, I know, but I hope that the following discussion makes it understandable.
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26.4 Computing confidence intervals

In the first part of the discussion we shall leave aside the issue of estimating the extent of the
dispersion — a troublesome matter, but one which seldom will result in unsound conclusions
even if handled crudely. To start from scratch again: The first — and seemingly straightforward
— step is to estimate the mean of the population based on the sample data. The next and more
complex step is to ask about the range of values (and their probabilities) that the estimate of
the mean might take — that is, the construction of confidence intervals. It seems natural to
assume that if our best guess about the population mean is the value of the sample mean, our
best guesses about the various values that the population mean might take if unbiased sampling
error causes discrepancies between population parameters and sample statistics, should be
values clustering around the sample mean in a symmetrical fashion (assuming that asymmetry
is not forced by the distribution — as for example, the binomial is close to symmetric near its
middle values). But how far away from the sample mean might the population mean be?

Let’s walk slowly through the logic, going back to basics to enhance intuition. Let’s start with
the familiar saying, “The apple doesn’t fall far from the tree.” Imagine that you are in a very
hypothetical place where an apple tree is above you, and you are not allowed to look up at
the tree, whose trunk has an infinitely thin diameter. You see an apple on the ground. You
must now guess where the trunk (center) of the tree is. The obvious guess for the location of
the trunk is right above the apple. But the trunk is not likely to be exactly above the apple
because of the small probability of the trunk being at any particular location, due to sampling
dispersion.

Though you find it easy to make a best guess about where the mean is (the true trunk), with
the given information alone you have no way of making an estimate of the probability that the
mean is one place or another, other than that the probability is the same that the tree is to
the north or south, east or west, of you. You have no idea about how far the center of the
tree is from you. You cannot even put a maximum on the distance it is from you, and without
a maximum you could not even reasonably assume a rectangular distribution, or a Normal
distribution, or any other.

Next you see two apples. What guesses do you make now? The midpoint between the two
obviously is your best guess about the location of the center of the tree. But still there is no
way to estimate the probability distribution of the location of the center of the tree.

Now assume you are given still another piece of information: The outermost spread of the
tree’s branches (the range) equals the distance between the two apples you see. With this
information, you could immediately locate the boundaries of the location of the center of the
tree. But this is only because the answer you sought was given to you in disguised form.

You could, however, come up with some statements of relative probabilities. In the absence
of prior information on where the tree might be, you would offer higher odds that the center
(the trunk) is in any unit of area close to the center of your two apples than in a unit of area
far from the center. That is, if you are told that either one apple, or two apples, came from
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one of two specified trees whose locations are given, with no reason to believe it is one tree
or the other (later, we can put other prior probabilities on the two trees), and you are also
told the dispersions, you now can put relative probabilities on one tree or the other being the
source. (Note to the advanced student: This is like the Neyman-Pearson procedure, and it is
easily reconciled with the Bayesian point of view to be explored later. One can also connect
this concept of relative probability to the Fisherian concept of maximum likelihood — which
is a probability relative to all others). And you could list from high to low the probabilities
for each unit of area in the neighborhood of your apple sample. But this procedure is quite
different from making any single absolute numerical probability estimate of the location of the
mean.

Now let’s say you see 10 apples on the ground. Of course your best estimate is that the trunk
of the tree is at their arithmetic center. But how close to the actual tree trunk (the population
mean) is your estimate likely to be? This is the question involved in confidence intervals. We
want to estimate a range (around the center, which we estimate with the center mean of the
sample, we said) within which we are pretty sure that the trunk lies.

To simplify, we consider variation along only one dimension — that is, on (say) a north-south
line rather than on two dimensions (the entire surface).

We first note that you have no reason to estimate the trunk’s location to be outside the sample
pattern, or at its edge, though it could be so in principle.

If the pattern of the 10 apples is tight, you imagine the pattern of the likely locations of the
population mean to be tight; if not, not. That is, it is intuitively clear that there is some
connection between how spread out are the sample observations and your confidence about the
location of the population mean. For example, consider two patterns of a thousand apples, one
with twice the spread of another, where we measure spread by (say) the diameter of the circle
that holds the inner half of the apples for each tree, or by the standard deviation. It makes
sense that if the two patterns have the same center point (mean), you would put higher odds
on the tree with the smaller spread being within some given distance — say, a foot — of the
estimated mean. But what odds would you give on that bet?

26.5 Procedure for estimating confidence intervals

Here is a canonical list of questions that help organize one’s thinking when constructing confi-
dence intervals. The list is comparable to the lists for questions in probability and for hypoth-
esis testing provided in earlier chapters. This set of questions will be applied operationally in
Chapter 27.

What Is The Question?

What is the purpose to be served by answering the question? Is this a “probability” or a
“statistics” question?
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If the Question Is a Statistical Inference Question:

What is the form of the statistics question?

Hypothesis test or confidence limits or other inference?

Assuming Question Is About Confidence Limits:

What is the description of the sample that has been observed?

Raw data?

Statistics of the sample?

Which universe? Assuming that the observed sample is representative of the universe from
which it is drawn, what is your best guess of the properties of the universe whose parameter
you wish to make statements about? Finite or infinite? Bayesian possibilities?

Which parameter do you wish to make statements about?

Mean, median, standard deviation, range, interquartile range, other?

Which symbols for the observed entities?

Discrete or continuous?

What values or ranges of values?

If the universe is as guessed at, for which samples do you wish to estimate the variation?
(Answer: samples the same size as has been observed)

Here one may continue with the conventional method, using perhaps a t or F or chi-square
test or whatever. Everything up to now is the same whether continuing with resampling or
with standard parametric test.

What procedure to produce the original entities in the sample?

What universe will you draw them from? Random selection?

What size resample?

Simple (single step) or complex (multiple “if” drawings)?

What procedure to produce resamples?

With or without replacement? Number of drawings?

What to record as result of resample drawing?

Mean, median, or whatever of resample

Stating the Distribution of Results

Histogram, frequency distribution, other?
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Choice Of Confidence Bounds

One or two-tailed?

90%, 95%, etc.?

Computation of Probabilities Within Chosen Bounds

26.6 Summary

This chapter discussed the theoretical basis for assessing the accuracy of population averages
from sample data. The following chapter shows two very different approaches to confidence
intervals, and provides examples of the computations.
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27 Confidence Intervals, Part 2: The Two
Approaches to Estimating Confidence
Intervals

There are two broad conceptual approaches to the question at hand: 1) Study the probability
of various distances between the sample mean and the likeliest population mean; and 2) study
the behavior of particular border universes. Computationally, both approaches often yield
the same result, but their interpretations differ. Approach 1 follows the conventional logic
although carrying out the calculations with resampling simulation.

27.1 Approach 1: The distance between sample and population
mean

If the study of probability can tell us the probability that a given population will produce a
sample with a mean at a given distance x from the population mean, and if a sample is an
unbiased estimator of the population, then it seems natural to turn the matter around and
interpret the same sort of data as telling us the probability that the estimate of the population
mean is that far from the “actual” population mean. A fly in the ointment is our lack of
knowledge of the dispersion, but we can safely put that aside for now. (See below, however.)

This first approach begins by assuming that the universe that actually produced the sample has
the same amount of dispersion (but not necessarily the same mean) that one would estimate
from the sample. One then produces (either with resampling or with Normal distribution
theory) the distribution of sample means that would occur with repeated sampling from that
designated universe with samples the size of the observed sample. One can then compute the
distance between the (assumed) population mean and (say) the inner 45 percent of sample
means on each side of the actually observed sample mean.

The crucial step is to shift vantage points. We look from the sample to the universe, instead
of from a hypothesized universe to simulated samples (as we have done so far). This same
interval as computed above must be the relevant distance as when one looks from the sample
to the universe. Putting this algebraically, we can state (on the basis of either simulation
or formal calculation) that for any given population S, and for any given distance 𝑑 from its
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mean 𝜇, that 𝑃((𝜇 − ̄𝑥) < 𝑑) = 𝛼, where ̄𝑥 is a randomly generated sample mean and 𝛼 is the
probability resulting from the simulation or calculation.

The above equation focuses on the deviation of various sample means ( ̄𝑥) from a stated popu-
lation mean (𝜇). But we are logically entitled to read the algebra in another fashion, focusing
on the deviation of 𝜇 from a randomly generated sample mean. This implies that for any
given randomly generated sample mean we observe, the same probability (𝛼) describes the
probability that 𝜇 will be at a distance 𝑑 or less from the observed ̄𝑥. (I believe that this
is the logic underlying the conventional view of confidence intervals, but I have yet to find a
clear-cut statement of it; in any case, it appears to be logically correct.)

To repeat this difficult idea in slightly different words: If one draws a sample (large enough to
not worry about sample size and dispersion), one can say in advance that there is a probability
𝑝 that the sample mean ( ̄𝑥) will fall within 𝑧 standard deviations of the population mean (𝜇).
One estimates the population dispersion from the sample. If there is a probability 𝑝 that ̄𝑥
is within 𝑧 standard deviations of 𝜇, then with probability 𝑝, 𝜇 must be within that same 𝑧
standard deviations of ̄𝑥. To repeat, this is, I believe, the heart of the standard concept of the
confidence interval, to the extent that there is thought through consensus on the matter.

So we can state for such populations the probability that the distance between the population
and sample means will be 𝑑 or less. Or with respect to a given distance, we can say that the
probability that the population and sample means will be that close together is 𝑝.
That is, we start by focusing on how much the sample mean diverges from the known popula-
tion mean. But then — and to repeat once more this key conceptual step — we refocus our
attention to begin with the sample mean and then discuss the probability that the population
mean will be within a given distance. The resulting distance is what we call the “confidence
interval.”

Please notice that the distribution (universe) assumed at the beginning of this approach did
not include the assumption that the distribution is centered on the sample mean or anywhere
else. It is true that the sample mean is used for purposes of reporting the location of the
estimated universe mean. But despite how the subject is treated in the conventional approach,
the estimated population mean is not part of the work of constructing confidence intervals.
Rather, the calculations apply in the same way to all universes in the neighborhood of the
sample (which are assumed, for the purpose of the work, to have the same dispersion). And
indeed, it must be so, because the probability that the universe from which the sample was
drawn is centered exactly at the sample mean is very small.

This independence of the confidence-intervals construction from the mean of the sample (and
the mean of the estimated universe) is surprising at first, but after a bit of thought it makes
sense.

In this first approach, as noted more generally above, we do not make estimates of the con-
fidence intervals on the basis of any logical inference from any one particular sample to any
one particular universe, because this cannot be done in principle ; it is the futile search for
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this connection that for decades roiled the brains of so many statisticians and now continues
to trouble the minds of so many students. Instead, we investigate the behavior of (in this
first approach) the universe that has a higher probability of producing the observed sample
than does any other universe (in the absence of any additional evidence to the contrary), and
whose characteristics are chosen on the basis of its resemblance to the sample. In this way the
estimation of confidence intervals is like all other statistical inference: One investigates the
probabilistic behavior of one or more hypothesized universes, the universe(s) being implicitly
suggested by the sample evidence but not logically implied by that evidence. And there are
no grounds for dispute about exactly what is being done — only about how to interpret the
results.

One difficulty with the above approach is that the estimate of the population dispersion does
not rest on sound foundations; this matter will be discussed later, but it is not likely to lead
to a seriously misleading conclusion.

A second difficulty with this approach is in interpreting the result. What is the justification
for focusing our attention on a universe centered on the sample mean? While this particular
universe may be more likely than any other, it undoubtedly has a low probability. And indeed,
the statement of the confidence intervals refers to the probabilities that the sample has come
from universes other than the universe centered at the sample mean, and quite a distance from
it.

My answer to this question does not rest on a set of meaningful mathematical axioms, and I
assert that a meaningful axiomatic answer is impossible in principle. Rather, I reason that we
should consider the behavior of this universe because other universes near it will produce much
the same results, differing only in dispersion from this one, and this difference is not likely to
be crucial; this last assumption is all-important, of course. True, we do not know what the
dispersion might be for the “true” universe. But elsewhere (Simon, forthcoming) I argue that
the concept of the “true universe” is not helpful — or maybe even worse than nothing — and
should be forsworn. And we can postulate a dispersion for any other universe we choose to
investigate. That is, for this postulation we unabashedly bring in any other knowledge we
may have. The defense for such an almost-arbitrary move would be that this is a second-order
matter relative to the location of the estimated universe mean, and therefore it is not likely
to lead to serious error. (This sort of approximative guessing sticks in the throats of many
trained mathematicians, of course, who want to feel an unbroken logic leading backwards into
the mists of axiom formation. But the axioms themselves inevitably are chosen arbitrarily just
as there is arbitrariness in the practice at hand, though the choice process for axioms is less
obvious and more hallowed by having been done by the masterminds of the past. (See Simon
(1998), on the necessity for judgment.) The absence of a sequence of equations leading from
some first principles to the procedure described in the paragraph above is evidence of what is
felt to be missing by those who crave logical justification. The key equation in this approach
is formally unassailable, but it seems to come from nowhere.)

In the examples in the following chapter may be found computations for two population
distributions — one binomial and one quantitative — of the histograms of the sample means
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produced with this procedure.

Operationally, we use the observed sample mean, together with an estimate of the dispersion
from the sample, to estimate a mean and dispersion for the population. Then with reference
to the sample mean we state a combination of a distance (on each side) and a probability per-
taining to the population mean. The computational examples will illustrate this procedure.

Once we have obtained a numerical answer, we must decide how to interpret it. There is a
natural and almost irresistible tendency to talk about the probability that the mean of the uni-
verse lies within the intervals, but this has proven confusing and controversial. Interpretation
in terms of a repeated process is not very satisfying intuitively.1

In my view, it is not worth arguing about any “true” interpretation of these computations.
One could sensibly interpret the computations in terms of the odds a decision maker, given

1An example of this sort of interpretation is as follows. Let us say the actual (unknown) population mean is
some number we will call 𝜇. We have a specific sample, and that sample has a mean we will call 𝑥̄. The mean
𝑥̄ that we happen to observe is almost certain to be a bit high or a bit low. Accordingly, if we want to be
reasonably confident that our inference is correct, we cannot claim that 𝜇 is precisely equal to the observed 𝑥̄.
Instead, we must construct an interval estimate or confidence interval of the form: 𝜇 = 𝑥̄ ± sampling error.

The crucial question is: How wide must this allowance for sampling error be? The answer, of course, will
depend on how much 𝑥̄ fluctuates…

Constructing 95% confidence intervals is like pitching horseshoes. In each there is a fixed
target, either the population 𝜇 or the stake. We are trying to bracket it with some chancy
device, either the random interval or the horseshoe. …
There are two important ways, however, that confidence intervals differ from pitching horse-
shoes. First, only one confidence interval is customarily constructed. Second, the target 𝜇
is not visible like a horseshoe stake. Thus, whereas the horseshoe player always knows the
score (and specifically, whether or not the last toss bracketed the stake), the statistician does
not. He continues to “throw in the dark,” without knowing whether or not a specific interval
estimate has bracketed 𝜇. All he has to go on is the statistical theory that assures him that,
in the long run, he will succeed 95% of the time. Wonnacott and Wonnacott (1990), (p. 258).

Savage refers to this type of interpretation as follows: (Savage 1972, 260–61):

… whenever its advocates talk of making assertions that have high probability, whether in
connection with testing or estimation, they do not actually make such assertions themselves,
but endlessly pass the buck, saying in effect, “This assertion has arisen according to a system
that will seldom lead you to make false assertions, if you adopt it. As for myself, I assert
nothing but the properties of the system.”

Lee writes at greater length (Lee 2012, preface to the first edition):

… the statement that a 95% confidence interval for an unknown parameter ran from -2 to +2
sounded as if the parameter lay in that interval with 95% probability and yet I was warned that
all I could say was that if I carried out similar procedures time after time then the unknown
parameters would lie in the confidence intervals I constructed 95% of the time. …
Subsequently, I discovered that the whole theory had been worked out in very considerable
detail in such books as Lehmann (1959 and 1986). But attempts such as those that Lehmann
describes to put everything on a firm foundation raised even more questions.
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the evidence, would reasonably offer about the relative probabilities that the sample came
from one of two specified universes (one of them probably being centered on the sample); this
does provide some information on reliability, but this procedure departs from the concept of
confidence intervals.

27.1.1 Example: Counted Data: The Accuracy of Political Polls

Consider the reliability of a randomly selected 1988 presidential election poll, showing 840
intended votes for Bush and 660 intended votes for Dukakis out of 1500 (Wonnacott and
Wonnacott 1990, 5). Let us work through the logic of this example.

• What is the question? Stated technically, what are the 95% confidence limits for
the proportion of Bush supporters in the population? (The proportion is the mean of
a binomial population or sample, of course.) More broadly, within which bounds could
one confidently believe that the population proportion was likely to lie? At this stage
of the work, we must already have translated the conceptual question (in this case, a
decision-making question from the point of view of the candidates) into a statistical
question. (See Chapter 20 on translating questions into statistical form.)

• What is the purpose to be served by answering this question? There is no sharp
and clear answer in this case. The goal could be to satisfy public curiosity, or strategy
planning for a candidate (though a national proportion is not as helpful for planning
strategy as state data would be). A secondary goal might be to help guide decisions
about the sample size of subsequent polls.

• Is this a “probability” or a “probability-statistics” question? The latter; we
wish to infer from sample to population rather than the converse.

• Given that this is a statistics question: What is the form of the statistics
question — confidence limits or hypothesis testing? Confidence limits.

• Given that the question is about confidence limits: What is the description
of the sample that has been observed? a) The raw sample data — the observed
numbers of interviewees are 840 for Bush and 660 for Dukakis — constitutes the best
description of the universe. The statistics of the sample are the given proportions — 56
percent for Bush, 44 percent for Dukakis.

• Which universe? (Assuming that the observed sample is representative of the universe
from which it is drawn, what is your best guess about the properties of the universe about
whose parameter you wish to make statements? The best guess is that the population
proportion is the sample proportion — that is, the population contains 56 percent Bush
votes, 44 percent Dukakis votes.

• Possibilities for Bayesian analysis? Not in this case, unless you believe that the
sample was biased somehow.

• Which parameter(s) do you wish to make statements about? Mean, median,
standard deviation, range, interquartile range, other? We wish to estimate the proportion
in favor of Bush (or Dukakis).
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• Which symbols for the observed entities? Perhaps 56 green and 44 yellow balls, if
a bucket is used, or “0” and “1” if the computer is used.

• Discrete or continuous distribution? In principle, discrete. (All distributions must
be discrete in practice.)

• What values or ranges of values?* “0” or “1.”
• Finite or infinite? Infinite — the sample is small relative to the population.
• If the universe is what you guess it to be, for which samples do you wish to

estimate the variation? A sample the same size as the observed poll.

Here one may continue either with resampling or with the conventional method. Everything
done up to now would be the same whether continuing with resampling or with a standard
parametric test.

27.2 Conventional Calculational Methods

Estimating the Distribution of Differences Between Sample and Population Means With the
Normal Distribution.

In the conventional approach, one could in principle work from first principles with lists and
sample space, but that would surely be too cumbersome. One could work with binomial
proportions, but this problem has too large a sample for tree-drawing and quincunx techniques;
even the ordinary textbook table of binomial coefficients is too small for this job. Calculating
binomial coefficients also is a big job. So instead one would use the Normal approximation to
the binomial formula.

(Note to the beginner: The distribution of means that we manipulate has the Normal shape
because of the operation of the Law of Large Numbers (The Central Limit theorem). Sums
and averages, when the sample is reasonably large, take on this shape even if the underlying
distribution is not Normal. This is a truly astonishing property of randomly drawn samples —
the distribution of their means quickly comes to resemble a “Normal” distribution, no matter
the shape of the underlying distribution. We then standardize it with the standard deviation
or other devices so that we can state the probability distribution of the sampling error of the
mean for any sample of reasonable size.)

The exercise of creating the Normal shape empirically is simply a generalization of particular
cases such as we will later create here for the poll by resampling simulation. One can also
go one step further and use the formula of de Moivre-Laplace-Gauss to describe the empirical
distributions, and to serve instead of the empirical distributions. Looking ahead now, the
difference between resampling and the conventional approach can be said to be that in the
conventional approach we simply plot the Gaussian distribution very carefully, and use a
formula instead of the empirical histograms, afterwards putting the results in a standardized
table so that we can read them quickly without having to recreate the curve each time we use
it. More about the nature of the Normal distribution may be found in Simon (forthcoming).
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All the work done above uses the information specified previously — the sample size of 1500,
the drawing with replacement, the observed proportion as the criterion.

27.3 Confidence Intervals Empirically — With Resampling

Estimating the Distribution of Differences Between Sample and Population Means By Resam-
pling

• What procedure to produce entities?: Random selection from bucket or computer.
• Simple (single step) or complex (multiple “if” drawings)?: Simple.
• What procedure to produce resamples? That is, with or without replacement?

With replacement.
• Number of drawings observations in actual sample, and hence, number of

drawings in resamples? 1500.
• What to record as result of each resample drawing? Mean, median, or whatever

of resample? The proportion is what we seek.
• Stating the distribution of results : The distribution of proportions for the trial

samples.
• Choice of confidence bounds? : 95%, two tails (choice made by the textbook that

posed the problem).
• Computation of probabilities within chosen bounds : Read the probabilistic result

from the histogram of results.
• Computation of upper and lower confidence bounds: Locate the values corre-

sponding to the 2.5th and 97.5th percentile of the resampled proportions.

Because the theory of confidence intervals is so abstract (even with the resampling method
of computation), let us now walk through this resampling demonstration slowly, using the
conventional Approach 1 described previously. We first produce a sample, and then see how
the process works in reverse to estimate the reliability of the sample, using the Bush-Dukakis
poll as an example. The computer program follows below.

• Step 1: Draw a sample of 1500 voters from a universe that, based on the observed
sample, is 56 percent for Bush, 44 percent for Dukakis. The first such sample produced
by the computer happens to be 53 percent for Bush; it might have been 58 percent, or
55 percent, or very rarely, 49 percent for Bush.

• Step 2: Repeat step 1 perhaps 400 or 1000 times.
• Step 3: Estimate the distribution of means (proportions) of samples of size 1500 drawn

from this 56-44 percent Bush- Dukakis universe; the resampling result is shown below.
• Step 4: In a fashion similar to what was done in steps 13, now compute the 95 percent

confidence intervals for some other postulated universe mean — say 53% for Bush, 47%
for Dukakis. This step produces a confidence interval that is not centered on the sample
mean and the estimated universe mean, and hence it shows the independence of the
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procedure from that magnitude. And we now compare the breadth of the estimated
confidence interval generated with the 53-47 percent universe against the confidence
interval derived from the corresponding distribution of sample means generated by the
“true” Bush-Dukakis population of 56 percent — 44 percent. If the procedure works well,
the results of the two procedures should be similar.

Now we interpret the results using this first approach. The histogram shows the probability
that the difference between the sample mean and the population mean — the error in the
sample result — will be about 2.5 percentage points too low. It follows that about 47.5
percent (half of 95 percent) of the time, a sample like this one will be between the population
mean and 2.5 percent too low. We do not know the actual population mean. But for any
observed sample like this one, we can say that there is a 47.5 percent chance that the distance
between it and the mean of the population that generated it is minus 2.5 percent or less.

Now a crucial step: We turn around the statement just above, and say that there is an 47.5
percent chance that the population mean is less than three percentage points higher than the
mean of a sample drawn like this one, but at or above the sample mean. (And we do the same
for the other side of the sample mean.) So to recapitulate: We observe a sample and its mean.
We estimate the error by experimenting with one or more universes in that neighborhood, and
we then give the probability that the population mean is within that margin of error from the
sample mean.

27.3.1 Example: Measured Data Example — the Bootstrap

A feed merchant decides to experiment with a new pig ration — ration A — on twelve pigs.
To obtain a random sample, he provides twelve customers (selected at random) with sufficient
food for one pig. After 4 weeks, the 12 pigs experience an average gain of 508 ounces. The
weight gain of the individual pigs are as follows: 496, 544, 464, 416, 512, 560, 608, 544, 480,
466, 512, 496.

The merchant sees that the ration produces results that are quite variable (from a low of 466
ounces to a high of 560 ounces) and is therefore reluctant to advertise an average weight gain
of 508 ounces. He speculates that a different sample of pigs might well produce a different
average weight gain.

Unfortunately, it is impractical to sample additional pigs to gain additional information about
the universe of weight gains. The merchant must rely on the data already gathered. How can
these data be used to tell us more about the sampling variability of the average weight gain?

Recalling that all we know about the universe of weight gains is the sample we have observed,
we can replicate that sample millions of times, creating a “pseudo-universe” that embodies
all our knowledge about the real universe. We can then draw additional samples from this
pseudo-universe and see how they behave.
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More specifically, we replicate each observed weight gain millions of times — we can imagine
writing each result that many times on separate pieces of paper — then shuffle those weight
gains and pick out a sample of 12. Average the weight gain for that sample, and record the
result. Take repeated samples, and record the result for each. We can then make a histogram
of the results; it might look something like this:
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Distribution of average weights from samples

Though we do not know the true average weight gain, we can use this histogram to estimate the
bounds within which it falls. The merchant can consider various weight gains for advertising
purposes, and estimate the probability that the true weight gain falls below the value. For
example, he might wish to advertise a weight gain of 500 ounces. Examining the histogram,
we see that about 36% of our samples yielded weight gains less than 500 ounces. The merchant
might wish to choose a lower weight gain to advertise, to reduce the risk of overstating the
effectiveness of the ration.

This illustrates the “bootstrap” method. By re-using our original sample many times (and
using nothing else), we are able to make inferences about the population from which the
sample came. This problem would conventionally be addressed with the “t-test.”

27.3.2 Example: Measured Data Example: Estimating Tree Diameters

• What is the question? A horticulturist is experimenting with a new type of tree.
She plants 20 of them on a plot of land, and measures their trunk diameter after two
years. She wants to establish a 90% confidence interval for the population average trunk
diameter. For the data given below, calculate the mean of the sample and calculate (or
describe a simulation procedure for calculating) a 90% confidence interval around the
mean. Here are the 20 diameters, in centimeters and in no particular order (Table 27.1):
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Table 27.1: Tree Diameters, in Centimeters

8.5 7.6 9.3 5.5 11.4 6.9 6.5 12.9 8.7 4.8
4.2 8.1 6.5 5.8 6.7 2.4 11.1 7.1 8.8 7.2

• What is the purpose to be served by answering the question? Either research
& development, or pure science.

• Is this a “probability” or a “statistics” question? Statistics.

• What is the form of the statistics question? Confidence limits.

• What is the description of the sample that has been observed? The raw data
as shown above.

• Statistics of the sample ? Mean of the tree data.

• Which universe? Assuming that the observed sample is representative of the universe
from which it is drawn, what is your best guess about the properties of the universe
whose parameter you wish to make statements about? Answer: The universe is like
the sample above but much, much bigger. That is, in the absence of other information,
we imagine this “bootstrap” universe as a collection of (say) one million trees of 8.5
centimeters width, one million of 7.2 centimeters, and so on. We’ll see in a moment that
the device of sampling with replacement makes it unnecessary for us to work with such
a large universe; by replacing each element after we draw it in a resample, we achieve
the same effect as creating an almost-infinite universe from which to draw the resamples.
(Are there possibilities for Bayesian analysis?) No Bayesian prior information will be
included.

• Which parameter do you wish to make statements about? The mean.

• Which symbols for the observed entities? Cards or computer entries with numbers
8.5…7.2, sample of an infinite size.

• If the universe is as guessed at, for which samples do you wish to estimate
the variation? Samples of size 20.

Here one may continue with the conventional method. Everything up to now is the same
whether continuing with resampling or with a standard parametric test. The information
listed above is the basis for a conventional test.

Continuing with resampling:

• What procedure will be used to produce the trial entities? Random selection:
simple (single step), not complex (multiple “if”) sample drawings).
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• What procedure to produce resamples? With replacement. As noted above, sam-
pling with replacement allows us to forego creating a very large bootstrap universe;
replacing the elements after we draw them achieves the same effect as would an infinite
universe.

• Number of drawings? 20 trees
• What to record as result of resample drawing? The mean.
• How to state the distribution of results? See histogram.
• Choice of confidence bounds? 90%, two-tailed.
• Computation of values of the resample statistic corresponding to chosen con-

fidence bounds? Read from histogram.

As has been discussed in Chapter 19, it often is more appropriate to work with the median than
with the mean. One reason is that the median is not so sensitive to the extreme observations
as is the mean. Another reason is that one need not assume a Normal distribution for the
universe under study: this consideration affects conventional statistics but usually does not
affect resampling, but it is worth keeping mind when a statistician is making a choice between
a parametric (that is, Normal-based) and a non-parametric procedure.

27.3.3 Example: Determining a Confidence Interval for the Median Aluminum
Content in Theban Jars

Data for the percentages of aluminum content in a sample of 18 ancient Theban jars (Catling
and Jones 1977) are as follows, arranged in ascending order: 11.4, 13.4, 13.5, 13.8, 13.9, 14.4,
14.5, 15.0, 15.1, 15.8, 16.0, 16.3, 16.5, 16.9, 17.0, 17.2, 17.5, 19.0. Consider now putting a
confidence interval around the median of 15.45 (halfway between the middle observations 15.1
and 15.8).

One may simply estimate a confidence interval around the median with a bootstrap procedure
by substituting the median for the mean in the usual bootstrap procedure for estimating a
confidence limit around the mean, as follows:

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

data = np.array(
[11.4, 13.4, 13.5, 13.8, 13.9, 14.4, 14.5, 15.0, 15.1, 15.8, 16.0, 16.3,
16.5, 16.9, 17.0, 17.2, 17.5, 19.0]

)
observed_median = np.median(data)

n = 10000
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medians = np.zeros(n)

for i in range(n):
sample = rnd.choice(data, size=18, replace=True)
# In the line above, replace=True is the default, so we could leave it out to
# get the same result. We added it just to emphasize that bootstrap samples
# are samples _with_ replacement.
medians[i] = np.median(sample)

plt.hist(medians, bins='auto')

print('Observed median aluminum content:', observed_median)

Observed median aluminum content: 15.45

pp = np.percentile(medians, (2.5, 97.5))
print('Estimate of 95 percent confidence interval:', pp)

Estimate of 95 percent confidence interval: [14.15 16.7 ]
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(This problem would be approached conventionally with a binomial procedure leading to quite
wide confidence intervals (Deshpande, Gore, and Shanubhogue 1995, 32)).
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27.3.4 Example: Confidence Interval for the Median Price Elasticity of Demand
for Cigarettes

The data for a measure of responsiveness of demand to a price change (the “elasticity” —
percent change in demand divided by percent change in price) are shown for cigarette price
changes as follows (Table 27.2). I (JLS) computed the data from cigarette sales data preceding
and following a tax change in a state (Lyon and Simon 1968).

Table 27.2: Price elasticity of demand in various states at various dates

1.725 1.139 .957 .863 .802 .517 .407 .304
.204 .125 .122 .106 .031 -.032 -.1 -.142
-.174 -.234 -.240 -.251 -.277 -.301 -.302 -.302
-.307 -.328 -.329 -.346 -.357 -.376 -.377 -.383
-.385 -.393 -.444 -.482 -.511 -.538 -.541 -.549
-.554 -.600 -.613 -.644 -.692 -.713 -.724 -.734
-.749 -.752 -.753 -.766 -.805 -.866 -.926 -.971
-.972 -.975 -1.018 -1.024 -1.066 -1.118 -1.145 -1.146
-1.157 -1.282 -1.339 -1.420 -1.443 -1.478 -2.041 -2.092
-7.100

The positive observations (implying an increase in demand when the price rises) run against
all theory, but can be considered to be the result simply of measurement errors, and treated as
they stand. Aside from this minor complication, the reader may work this example similarly
to the case of the Theban jars. Consider this program:

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

data = np.array([
1.725, 1.139, 0.957, 0.863, 0.802, 0.517, 0.407, 0.304,
0.204, 0.125, 0.122, 0.106, 0.031, -0.032, -0.1, -0.142,
-0.174, -0.234, -0.240, -0.251, -0.277, -0.301, -0.302, -0.302,
-0.307, -0.328, -0.329, -0.346, -0.357, -0.376, -0.377, -0.383,
-0.385, -0.393, -0.444, -0.482, -0.511, -0.538, -0.541, -0.549,
-0.554, -0.600, -0.613, -0.644, -0.692, -0.713, -0.724, -0.734,
-0.749, -0.752, -0.753, -0.766, -0.805, -0.866, -0.926, -0.971,
-0.972, -0.975, -1.018, -1.024, -1.066, -1.118, -1.145, -1.146,
-1.157, -1.282, -1.339, -1.420, -1.443, -1.478, -2.041, -2.092,
-7.100
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])
data_median = np.median(data)

n = 10000

medians = np.zeros(n)

for i in range(n):
sample = np.random.choice(data, size=73, replace=True)
medians[i] = np.median(sample)

plt.hist(medians, bins='auto')

print('Observed median elasticity', data_median)

Observed median elasticity -0.511

pp = np.percentile(medians, (2.5, 97.5))
print('Estimate of 95 percent confidence interval', pp)

Estimate of 95 percent confidence interval [-0.692 -0.357]
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27.4 Measured Data Example: Confidence Intervals For a
Difference Between Two Means

This is another example from the mice data.

Returning to the data on the survival times of the two groups of mice in Section 24.0.4. It is
the view of this book that confidence intervals should be calculated for a difference between
two groups only if one is reasonably satisfied that the difference is not due to chance. Some
statisticians might choose to compute a confidence interval in this case nevertheless, some
because they believe that the confidence-interval machinery is more appropriate to deciding
whether the difference is the likely outcome of chance than is the machinery of a hypothesis
test in which you are concerned with the behavior of a benchmark or null universe. So let us
calculate a confidence interval for these data, which will in any case demonstrate the technique
for determining a confidence interval for a difference between two samples.

Our starting point is our estimate for the difference in mean survival times between the two
samples — 30.63 days. We ask “How much might this estimate be in error? If we drew addi-
tional samples from the control universe and additional samples from the treatment universe,
how much might they differ from this result?”

We do not have the ability to go back to these universes and draw more samples, but from the
samples themselves we can create hypothetical universes that embody all that we know about
the treatment and control universes. We imagine replicating each element in each sample
millions of times to create a hypothetical control universe and (separately) a hypothetical
treatment universe. Then we can draw samples (separately) from these hypothetical universes
to see how reliable is our original estimate of the difference in means (30.63 days).

Actually, we use a shortcut — instead of copying each sample element a million times, we
simply replace it after drawing it for our resample, thus creating a universe that is effectively
infinite.

Here are the steps:

• Step 1: Consider the two samples separately as the relevant universes.
• Step 2: Draw a sample of 7 with replacement from the treatment group and calculate

the mean.
• Step 3: Draw a sample of 9 with replacement from the control group and calculate the

mean.
• Step 4: Calculate the difference in means (treatment minus control) & record.
• Step 5: Repeat steps 2-4 many times.
• Step 6: Review the distribution of resample means; the 5th and 95th percentiles are

estimates of the endpoints of a 90 percent confidence interval.

Here is a Python example:
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import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

treatment = np.array([94, 38, 23, 197, 99, 16, 141])
control = np.array([52, 10, 40, 104, 51, 27, 146, 30, 46])

observed_diff = np.mean(treatment) - np.mean(control)

n = 10000
mean_delta = np.zeros(n)

for i in range(n):
treatment_sample = rnd.choice(treatment, size=7, replace=True)
control_sample = rnd.choice(control, size=9, replace=True)
mean_delta[i] = np.mean(treatment_sample) - np.mean(control_sample)

plt.hist(mean_delta, bins='auto')

print('Observed difference in means:', observed_diff)

Observed difference in means: 30.63492063492064

pp = np.percentile(mean_delta, (5, 95))
print('Estimate of 90 percent confidence interval:', pp)

Estimate of 90 percent confidence interval: [-12.6515873 74.7484127]
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Interpretation: This means that one can be 90 percent confident that the mean of the
difference (which is estimated to be 30.635) falls between -12.652) and 74.748). So the reliability
of the estimate of the mean is very small.

27.5 Count Data Example: Confidence Limit on a Proportion,
Framingham Cholesterol Data

The Framingham cholesterol data were used in Section 21.2.7 to illustrate the first classic
question in statistical inference — interpretation of sample data for testing hypotheses. Now
we use the same data for the other main theme in statistical inference — the estimation of
confidence intervals. Indeed, the bootstrap method discussed above was originally devised for
estimation of confidence intervals. The bootstrap method may also be used to calculate the
appropriate sample size for experiments and surveys, another important topic in statistics.

Consider for now just the data for the sub-group of 135 high-cholesterol men in Table 21.4.
Our second classic statistical question is as follows: How much confidence should we have that
if we were to take a much larger sample than was actually obtained, the sample mean (that is,
the proportion 10/135 = .07) would be in some close vicinity of the observed sample mean?
Let us first carry out a resampling procedure to answer the questions, waiting until afterwards
to discuss the logic of the inference.

1. Construct a bucket containing 135 balls — 10 red (infarction) and 125 green (no infarc-
tion) to simulate the universe as we guess it to be.

2. Mix, choose a ball, record its color, replace it, and repeat 135 times (to simulate a sample
of 135 men).

3. Record the number of red balls among the 135 balls drawn.
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4. Repeat steps 2-3 perhaps 10000 times, and observe how much the total number of reds
varies from sample to sample. We arbitrarily denote the boundary lines that include 47.5
percent of the hypothetical samples on each side of the sample mean as the 95 percent
“confidence limits” around the mean of the actual population.

Here is a Python program:

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

men = np.repeat([1, 0], repeats=[10, 125])

n = 10000
z = np.zeros(n)

for i in range(n):
sample = rnd.choice(men, size=135, replace=True)
infarctions = np.sum(sample == 1)
z[i] = infarctions / 135

plt.hist(z, bins='auto')

pp = np.percentile(z, (2.5, 97.5))
print('Estimate of 95 percent confidence interval', pp)

Estimate of 95 percent confidence interval [0.02962963 0.11851852]
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(The result is the 95 percent confidence interval, enclosing 95 percent of the resample results)

The variation in the histogram above highlights the fact that a sample containing only 10 cases
of infarction is very small, and the number of observed cases — or the proportion of cases —
necessarily varies greatly from sample to sample. Perhaps the most important implication of
this statistical analysis, then, is that we badly need to collect additional data.

Again, this is a classic problem in confidence intervals, found in all subject fields. The language
used in the cholesterol-infarction example is exactly the same as the language used for the
Bush-Dukakis poll above except for labels and numbers.

As noted above, the philosophic logic of confidence intervals is quite deep and controversial,
less obvious than for the hypothesis test. The key idea is that we can estimate for any given
universe the probability P that a sample’s mean will fall within any given distance D of the
universe’s mean; we then turn this around and assume that if we know the sample mean, the
probability is P that the universe mean is within distance D of it. This inversion is more
slippery than it may seem. But the logic is exactly the same for the formulaic method and
for resampling. The only difference is how one estimates the probabilities — either with a
numerical resampling simulation (as here), or with a formula or other deductive mathematical
device (such as counting and partitioning all the possibilities, as Galileo did when he answered
a gambler’s question about three dice). And when one uses the resampling method, the
probabilistic calculations are the least demanding part of the work. One then has mental
capacity available to focus on the crucial part of the job — framing the original question
soundly, choosing a model for the facts so as to properly resemble the actual situation, and
drawing appropriate inferences from the simulation.

27.6 Approach 2: Probability of various universes producing this
sample

A second approach to the general question of estimate accuracy is to analyze the behavior of
a variety of universes centered at other points on the line, rather than the universe centered
on the sample mean. One can ask the probability that a distribution centered away from the
sample mean, with a given dispersion, would produce (say) a 10-apple scatter having a mean
as far away from the given point as the observed sample mean. If we assume the situation
to be symmetric, we can find a point at which we can say that a distribution centered there
would have only a (say) 5 percent chance of producing the observed sample. And we can also
say that a distribution even further away from the sample mean would have an even lower
probability of producing the given sample. But we cannot turn the matter around and say
that there is any particular chance that the distribution that actually produced the observed
sample is between that point and the center of the sample.

Imagine a situation where you are standing on one side of a canyon, and you are hit by a
baseball, the only ball in the vicinity that day. Based on experiments, you can estimate that
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a baseball thrower who you see standing on the other side of the canyon has only a 5 percent
chance of hitting you with a single throw. But this does not imply that the source of the ball
that hit you was someone else standing in the middle of the canyon, because that is patently
impossible. That is, your knowledge about the behavior of the “boundary” universe does not
logically imply anything about the existence and behavior of any other universes. But just
as in the discussion of testing hypotheses, if you know that one possibility is unlikely, it is
reasonable that as a result you will draw conclusions about other possibilities in the context
of your general knowledge and judgment.

We can find the “boundary” distribution(s) we seek if we a) specify a measure of dispersion,
and b) try every point along the line leading away from the sample mean, until we find that
distribution that produces samples such as that observed with a (say) 5 percent probability or
less.

To estimate the dispersion, in many cases we can safely use an estimate based on the sample
dispersion, using either resampling or Normal distribution theory. The hardest cases for resam-
pling are a) a very small sample of data, and b) a proportion near 0 or near 1.0 (because the
presence or absence in the sample of a small number of observations can change the estimate
radically, and therefore a large sample is needed for reliability). In such situations one should
use additional outside information, or Normal distribution theory, or both.

We can also create a confidence interval in the following fashion: We can first estimate the
dispersion for a universe in the general neighborhood of the sample mean, using various de-
vices to be “conservative,” if we like.2 Given the estimated dispersion, we then estimate the
probability distribution of various amounts of error between observed sample means and the
population mean. We can do this with resampling simulation as follows: a) Create other uni-
verses at various distances from the sample mean, but with other characteristics similar to the
universe that we postulate for the immediate neighborhood of the sample, and b) experiment
with those universes. One can also apply the same logic with a more conventional parametric
approach, using general knowledge of the sampling distribution of the mean, based on Normal
distribution theory or previous experience with resampling. We shall not discuss the latter
method here.

As with approach 1, we do not make any probability statements about where the population
mean may be found. Rather, we discuss only what various hypothetical universes might
produce, and make inferences about the “actual” population’s characteristics by comparison
with those hypothesized universes.

If we are interested in (say) a 95 percent confidence interval, we want to find the distribution
on each side of the sample mean that would produce a sample with a mean that far away only
2.5 percent of the time (2 * .025 = 1-.95). A shortcut to find these “border distributions” is to
plot the sampling distribution of the mean at the center of the sample, as in Approach 1. Then

2More about this later; it is, as I said earlier, not of primary importance in estimating the accuracy of the
confidence intervals; note, please, that as we talk about the accuracy of statements about accuracy, we are
moving down the ladder of sizes of causes of error.
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find the (say) 2.5 percent cutoffs at each end of that distribution. On the assumption of equal
dispersion at the two points along the line, we now reproduce the previously-plotted distribu-
tion with its centroid (mean) at those 2.5 percent points on the line. The new distributions
will have 2.5 percent of their areas on the other side of the mean of the sample.

27.6.1 Example: Approach 2 for Counted Data: the Bush-Dukakis Poll

Let’s implement Approach 2 for counted data, using for comparison the Bush-Dukakis poll
data discussed earlier in the context of Approach 1.

We seek to state, for universes that we select on the basis that their results will interest
us, the probability that they (or it, for a particular universe) would produce a sample as
far or farther away from the mean of the universe in question as the mean of the observed
sample — 56 percent for Bush. The most interesting universe is that which produces such a
sample only about 5 percent of the time, simply because of the correspondence of this value
to a conventional breakpoint in statistical inference. So we could experiment with various
universes by trial and error to find this universe.

We can learn from our previous simulations of the Bush — Dukakis poll in Approach 1 that
about 95 percent of the samples fall within .025 on either side of the sample mean (which we
had been implicitly assuming is the location of the population mean). If we assume (and there
seems no reason not to) that the dispersions of the universes we experiment with are the same,
we will find (by symmetry) that the universe we seek is centered on those points .025 away
from .56, or .535 and .585.

From the standpoint of Approach 2, then, the conventional sample formula that is centered at
the mean can be considered a shortcut to estimating the boundary distributions. We say that
the boundary is at the point that centers a distribution which has only a (say) 2.5 percent
chance of producing the observed sample; it is that distribution which is the subject of the
discussion, and not the distribution which is centered at 𝜇 = ̄𝑥. Results of these simulations
are shown in Figure 27.1.

About these distributions centered at .535 and .585 — or more importantly for understanding
an election situation, the universe centered at .535 — one can say: Even if the “true” value is
as low as 53.5 percent for Bush, there is only a 2 ½ percent chance that a sample as high as
56 percent pro-Bush would be observed. (The values of a 2 ½ percent probability and a 2 ½
percent difference between 56 percent and 53.5 percent coincide only by chance in this case.)
It would be even more revealing in an election situation to make a similar statement about
the universe located at 50-50, but this would bring us almost entirely within the intellectual
ambit of hypothesis testing.

To restate, then: Moving progressively farther away from the sample mean, we can eventually
find a universe that has only some (any) specified small probability of producing a sample like
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Figure 27.1: Approach 2 for Bush-Dukakis problem

the one observed. One can then say that this point represents a “limit” or “boundary” so that
the interval between it and the sample mean may be called a confidence interval.

27.6.2 Example: Approach 2 for Measured Data: The Diameters of Trees

To implement Approach 2 for measured data, one may proceed exactly as with Approach 1
above except that the output of the simulation with the sample mean as midpoint will be used
for guidance about where to locate trial universes for Approach 2. The results for the tree
diameter data (Table 27.1) are shown in Figure 27.2.

27.7 Interpretation of Approach 2

Now to interpret the results of the second approach: Assume that the sample is not drawn
in a biased fashion (such as the wind blowing all the apples in the same direction), and that
the population has the same dispersion as the sample. We can then say that distributions
centered at the two endpoints of the 95 percent confidence interval (each of them including a
tail in the direction of the observed sample mean with 2.5 percent of the area), or even further
away from the sample mean, will produce the observed sample only 5 percent of the time or
less. The result of the second approach is more in the spirit of a hypothesis test than of
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Figure 27.2: Approach 2 for tree diameters

the usual interpretation of confidence intervals. Another statement of the result of the second
approach is: We postulate a given universe — say, a universe at (say) the two-tailed 95 percent
boundary line. We then say: The probability that the observed sample would be produced by
a universe with a mean as far (or further) from the observed sample’s mean as the universe
under investigation is only 2.5 percent. This is similar to the probability value interpretation
of a hypothesis-test framework. It is not a direct statement about the location of the mean of
the universe from which the sample has been drawn. But it is certainly reasonable to derive
a betting-odds interpretation of the statement just above, to wit: The chances are 2½ in 100
(or, the odds are 2½ to 97½ ) that a population located here would generate a sample with
a mean as far away as the observed sample. And it would seem legitimate to proceed to the
further betting-odds statement that (assuming we have no additional information) the odds
are 97 ½ to 2 ½ that the mean of the universe that generated this sample is no farther away
from the sample mean than the mean of the boundary universe under discussion. About this
statement there is nothing slippery, and its meaning should not be controversial.

Here again the tactic for interpreting the statistical procedure is to restate the facts of the
behavior of the universe that we are manipulating and examining at that moment. We use
a heuristic device to find a particular distribution — the one that is at (say) the 97 ½ –2
½ percent boundary — and simply state explicitly what the distribution tells us implicitly:
The probability of this distribution generating the observed sample (or a sample even further
removed) is 2 ½ percent. We could go on to say (if it were of interest to us at the moment)
that because the probability of this universe generating the observed sample is as low as it is,
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we “reject” the “hypothesis” that the sample came from a universe this far away or further.
Or in other words, we could say that because we would be very surprised if the sample were to
have come from this universe, we instead believe that another hypothesis is true. The “other”
hypothesis often is that the universe that generated the sample has a mean located at the
sample mean or closer to it than the boundary universe.

The behavior of the universe at the 97 ½ –2 ½ percent boundary line can also be interpreted
in terms of our “confidence” about the location of the mean of the universe that generated the
observed sample. We can say: At this boundary point lies the end of the region within which
we would bet 97 ½ to 2 ½ that the mean of the universe that generated this sample lies to the
(say) right of it.

As noted in the preview to this chapter, we do not learn about the reliability of sample estimates
of the population mean (and other parameters) by logical inference from any one particular
sample to any one particular universe, because in principle this cannot be done. Instead, in
this second approach we investigate the behavior of various universes at the borderline of the
neighborhood of the sample, those universes being chosen on the basis of their resemblances to
the sample. We seek, for example, to find the universes that would produce samples with the
mean of the observed sample less than (say) 5 percent of the time. In this way the estimation
of confidence intervals is like all other statistical inference: One investigates the probabilistic
behavior of hypothesized universes, the hypotheses being implicitly suggested by the sample
evidence but not logically implied by that evidence.

Approaches 1 and 2 may (if one chooses) be seen as identical conceptually as well as (in many
cases) computationally (except for the asymmetric distributions mentioned earlier). But as
I see it, the interpretation of them is rather different, and distinguishing them helps one’s
intuitive understanding.

27.8 Exercises

You will find solutions for problems in Appendix A.

27.8.1 Exercise: unemployment percentage

Note 66: Notebook: Unemployment percent exercise

• Download notebook
• Interact

In a sample of 200 people, 7 percent are found to be unemployed. Determine a 95 percent
confidence interval for the true population proportion.
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import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Your code here.

End of notebook: Unemployment percent exercise

unemployment_percent_exercise starts at Note 66.

See {Section A.3}.

27.8.2 Exercise: battery lifetime

Note 67: Notebook: Battery lifetime exercise

• Download notebook
• Interact

A sample of 20 batteries is tested, and the average lifetime is 28.85 months. Establish a 95
percent confidence interval for the true average value. The sample values (lifetimes in months)
are listed below.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

lifetimes = np.array([30, 32, 31, 28, 31, 29, 29, 24, 30, 31,
28, 28, 32, 31, 24, 23, 31, 27, 27, 31])

print('Mean is:', np.mean(lifetimes))

Mean is: 28.85

End of notebook: Battery lifetime exercise

battery_lifetime_exercise starts at Note 67.

See Section A.4.
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27.8.3 Exercise: optical density

Note 68: Notebook: Optical density exercise

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

Suppose we have 10 measurements of Optical Density on a batch of HIV negative control
samples:

density = np.array(
[.02, .026, .023, .017, .022, .019, .018, .018, .017, .022])

Derive a 95 percent confidence interval for the sample mean. Are there enough measurements
to produce a satisfactory answer?

End of notebook: Optical density exercise

optical_density_exercise starts at Note 68.

See: Section A.5.
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28 Some Last Words About the Reliability of
Sample Averages

28.1 The problem of uncertainty about the dispersion

The inescapable difficulty of estimating the amount of dispersion in the population has greatly
exercised statisticians over the years. Hence I must try to clarify the matter. Yet in prac-
tice this issue turns out not to be the likely source of much error even if one is somewhat
wrong about the extent of dispersion, and therefore we should not let it be a stumbling block
in the way of our producing estimates of the accuracy of samples in estimating population
parameters.

Student’s t test was designed to get around the problem of the lack of knowledge of the pop-
ulation dispersion. But Wallis and Roberts wrote about the t test: “[F]ar-reaching as have
been the consequences of the t distribution for technical statistics, in elementary applications it
does not differ enough from the normal distribution…to justify giving beginners this added com-
plexity.” [wallis1956statistics], p. x) “Although Student’s t and the F ratio are explained…the
student…is advised not ordinarily to use them himself but to use the shortcut methods… These,
being non-parametric and involving simpler computations, are more nearly foolproof in the
hands of the beginner — and, ordinarily, only a little less powerful.” (p. xi)1

If we knew the population parameter — the proportion, in the case we will discuss — we could
easily determine how inaccurate the sample proportion is likely to be. If, for example, we
wanted to know about the likely inaccuracy of the proportion of a sample of 100 voters drawn
from a population of a million that is 60% Democratic, we could simply simulate drawing (say)
200 samples of 100 voters from such a universe, and examine the average inaccuracy of the
200 sample proportions.

But in fact we do not know the characteristics of the actual universe. Rather, the nature of the
actual universe is what we seek to learn about. Of course, if the amount of variation among
samples were the same no matter what the Republican-Democrat proportions in the universe,
the issue would still be simple, because we could then estimate the average inaccuracy of the

1They go on to say, “Techniques and details, beyond a comparatively small range of fairly basic methods,
are likely to do more harm than good in the hands of beginners…The great ideas…are lost… nonparametric
[methods] … involving simpler computations are more nearly foolproof in the hands of the beginner …” (Wallis
and Roberts 1956, viii, xi) Their stance is very much in contrast to that of Fisher, who wrote somewhere
about the t test as a “revolution.”
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sample proportion for any universe and then assume that it would hold for our universe. But
it is reasonable to suppose that the amount of variation among samples will be different for
different Democrat-Republican proportions in the universe.

Let us first see why the amount of variation among samples drawn from a given universe is
different with different relative proportions of the events in the universe. Consider a universe
of 999,999 Democrats and one Republican. Most samples of 100 taken from this universe will
contain 100 Democrats. A few (and only a very, very few) samples will contain 99 Democrats
and one Republican. So the biggest possible difference between the sample proportion and
the population proportion (99.9999%) is less than one percent (for the very few samples of
99% Democrats). And most of the time the difference will only be the tiny difference between
a sample of 100 Democrats (sample proportion = 100%), and the population proportion of
99.9999%.

Compare the above to the possible difference between a sample of 100 from a universe of half a
million Republicans and half a million Democrats. At worst a sample could be off by as much
as 50% (if it got zero Republicans or zero Democrats), and at best it is unlikely to get exactly
50 of each. So it will almost always be off by 1% or more.

It seems, therefore, intuitively reasonable (and in fact it is true) that the likely difference be-
tween a sample proportion and the population proportion is greatest with a 50%-50% universe,
least with a 0%-100% universe, and somewhere in between for probabilities, in the fashion of
Figure 28.1.

.5 1.0
PopulationProportion

E
rr
o
ri
n
a
v
e
ra
g
e
sa
m
p
le

in
%

Figure 28.1: Relationship Between the Population Proportion and the Likely Error In a Sample

Perhaps it will help to clarify the issue of estimating dispersion if we consider this: If we
compare estimates for a second sample based on a) the population, versus b) the first sample,
the former will be more accurate than the latter, because of the sampling variation in the
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first sample that affects the latter estimate. But we cannot estimate that sampling variation
without knowing more about the population.

28.2 Notes on the use of confidence intervals

1. Confidence intervals are used more frequently in the physical sciences — indeed, the
concept was developed for use in astronomy — than in bio-statistics and in the social
sciences; in these latter fields, measurement is less often the main problem and the
distinction between hypotheses often is difficult.

2. Some statisticians suggest that one can do hypothesis tests with the confidence-interval
concept. But that seems to me equivalent to suggesting that one can get from New York
to Chicago by flying first to Los Angeles. Additionally, the logic of hypothesis tests is
much clearer than the logic of confidence intervals, and it corresponds to our intuitions
so much more easily.

3. Discussions of confidence intervals sometimes assert that one cannot make a probability
statement about where the population mean may be, yet can make statements about the
probability that a particular set of samples may bound that mean.

If we agree that our interest is upcoming events and probably decision-making, then we ob-
viously are interested in putting betting odds on the location of the population mean (and
subsequent samples). And a statement about process will not help us with that, but only a
probability statement.

Moving progressively farther away from the sample mean, we can find a universe that has only
some (any) specified small probability of producing a sample like the one observed. One can
say that this point represents a “limit” or “boundary” between which and the sample mean
may be called a confidence interval, I suppose.

This issue is discussed in more detail in Simon (1998, published online).

28.3 Overall summary and conclusions about confidence intervals

The first task in statistics is to measure how much — to make a quantitative estimate of the
universe from which a given sample has been drawn, including especially the average and the
dispersion; the theory of point estimation is discussed in Chapter 19.

The next task is to make inferences about the meaning of the estimates. A hypothesis test
helps us decide whether two or more universes are the same or different from each other. In
contrast, the confidence interval concept helps us decide on the reliability of an estimate.

Confidence intervals and hypothesis tests are not entirely disjoint. In fact, hypothesis testing
of a single sample against a benchmark value is, under all interpretations, I think, operationally
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identical with constructing a confidence interval and checking whether it includes that bench-
mark value. But the underlying reasoning is different because the questions which they are
designed to answer are different.

Having now worked through the entire procedure of producing a confidence interval, it should
be glaringly obvious why statistics is such a difficult subject. The procedure is very long, and
involves a very large number of logical steps. Such a long logical train is very hard to control
intellectually, and very hard to follow with one’s intuition. The actual computation of the
probabilities is the very least of it, almost a trivial exercise.
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29 Correlation and Causation

29.1 Preview

The correlation (speaking in a loose way for now) between two variables measures the strength
of the relationship between them. A positive “linear” correlation between two variables 𝑥 and
𝑦 implies that high values of 𝑥 are associated with high values of 𝑦, and that low values of 𝑥 are
associated with low values of 𝑦. A negative correlation implies the opposite; high values of 𝑥
are associated with low values of 𝑦. By definition a “correlation coefficient” (Section 29.5) close
to zero indicates little or no linear relationship between two variables; correlation coefficients
close to 1 and -1 denote a strong positive or negative relationship. We will start by using a
simpler measure of correlation than the correlation coefficient, however.

One way to measure correlation with the resampling method is to rank both variables from
highest to lowest, and investigate how often in randomly-generated samples the rankings of
the two variables are as close to each other as the rankings in the observed variables. A better
approach, because it uses more of the quantitative information contained in the data — though
it requires more computation — is to multiply the values for the corresponding pairs of values
for the two variables, and compare the sum of the resulting products to the analogous sum for
randomly-generated pairs of the observed variable values (Section 29.4). The last section of
the chapter (Section 29.6) shows how the strength of a relationship can be determined when
the data are counted, rather than measured. First comes some discussion of the philosophical
issues involved in correlation and causation.

29.2 Introduction to correlation and causation

The questions in examples Section 12.1 to Section 13.3.3 have been stated in the following
form: Does the independent variable (say, irradiation; or type of pig ration) have an effect
upon the dependent variable (say, sex of fruit flies; or weight gain of pigs)? This is another
way to state the following question: Is there a causal relationship between the independent
variable(s) and the dependent variable? (“Independent” or “control” is the name we give to
the variable(s) the researcher believes is (are) responsible for changes in the other variable,
which we call the “dependent” or “response” variable.)

A causal relationship cannot be defined perfectly neatly. Even an experiment does not de-
termine perfectly whether a relationship deserves to be called “causal” because, among other
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reasons, the independent variable may not be clear-cut. For example, even if cigarette smok-
ing experimentally produces cancer in rats, it might be the paper and not the tobacco that
causes the cancer. Or consider the fabled gentlemen who got experimentally drunk on bour-
bon and soda on Monday night, scotch and soda on Tuesday night, and brandy and soda on
Wednesday night — and stayed sober on Thursday night by drinking nothing. With a vast
inductive leap of scientific imagination, they treated their experience as an empirical demon-
stration that soda, the common element each evening, was the cause of the inebriated state
they had experienced. Notice that their deduction was perfectly sound, given only the recent
evidence they had. Other knowledge of the world is necessary to set them straight. That
is, even in a controlled experiment there is often no way except subject-matter knowledge to
avoid erroneous conclusions about causality. Nothing except substantive knowledge or scien-
tific intuition would have led them to the recognition that it is the alcohol rather than the soda
that made them drunk, as long as they always took soda with their drinks. And no statistical
procedure can suggest to them that they ought to experiment with the presence and absence
of soda. If this is true for an experiment, it must also be true for an uncontrolled study.

Here are some tests that a relationship usually must pass to be called causal. That is, a
working definition of a particular causal relationship is expressed in a statement that has these
important characteristics:

1. It is an association that is strong enough so that the observer believes it to have a
predictive (explanatory) power great enough to be scientifically useful or interesting. For
example, he is not likely to say that wearing glasses causes (or is a cause of) auto accidents
if the observed correlation coefficient is .071, even if the sample is large enough to make
the correlation statistically convincing. In other words, unimportant relationships are
not likely to be labeled causal.

Various observers may well differ in judging whether or not an association is strong
enough to be important and therefore “causal.” And the particular field in which the
observer works may affect this judgment. This is an indication that whether or not a
relationship is dubbed “causal” involves a good deal of human judgment and is subject
to dispute.

2. The “side conditions” must be sufficiently few and sufficiently observable so that the
relationship will apply under a wide enough range of conditions to be considered useful
or interesting. In other words, the relationship must not require too many “if”s, “and”s,
and “but”s in order to hold. For example, one might say that an increase in income caused
an increase in the birth rate if this relationship were observed everywhere. But, if the
relationship were found to hold only in developed countries, among the educated classes,
and among the higher-income groups, then it would be less likely to be called “causal”

1As we discussed in the introduction, correlation coefficient values can vary between 1 and -1, where values
near 1 mean a very strong positive linear relationship (high values in one variable predict high values in the
other), values near -1 mean a very strong negative linear relationship (high values in one predict low values
in the other), and values near 0 mean very little linear relationship between the variables.
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— even if the correlation were extremely high once the specified conditions had been met.
A similar example can be made of the relationship between income and happiness.

3. For a relationship to be called “causal,” there should be sound reason to believe that, even
if the control variable were not the “real” cause (and it never is), other relevant “hidden”
and “real” cause variables must also change consistently with changes in the control
variables. That is, a variable being manipulated may reasonably be called “causal” if
the real variable for which it is believed to be a proxy must always be tied intimately to
it. (Between two variables, v and w, v may be said to be the “more real” cause and w
a “spurious” cause, if v and w require the same side conditions, except that v does not
require w as a side condition.) This third criterion (non-spuriousness) is of particular
importance to policy makers. The difference between it and the previous criterion for side
conditions is that a plenitude of very restrictive side conditions may take the relationship
out of the class of causal relationships, even though the effects of the side conditions are
known. This criterion of nonspuriousness concerns variables that are as yet unknown and
unevaluated but that have a possible ability to upset the observed association.

Examples of spurious relationships and hidden-third-factor causation are commonplace.
For a single example, toy sales rise in December. There is no danger in saying that
December causes an increase in toy sales, even though it is “really” Christmas that causes
the increase, because Christmas and December practically always accompany each other.

Belief that the relationship is not spurious is increased if many likely variables have been
investigated and none removes the relationship. This is further demonstration that the
test of whether or not an association should be called “causal” cannot be a logical one;
there is no way that one can express in symbolic logic the fact that many other variables
have been tried without changing the relationship in question.

4. The more tightly a relationship is bound into (that is, deduced from, compatible with,
and logically connected to) a general framework of theory, the stronger is its claim to
be called “causal.” For an economics example, observed positive relationships between
the interest rate and business investment and between profits and investment are more
likely to be called “causal” than is the relationship between liquid assets and investment.
This is so because the first two statements can be deduced from classical price theory,
whereas the third statement cannot. Connection to a theoretical framework provides
support for belief that the side conditions necessary for the statement to hold true are
not restrictive and that the likelihood of spurious correlation is not great; because a
statement is logically connected to the rest of the system, the statement tends to stand
or fall as the rest of the system stands or falls. And, because the rest of the system
of economic theory has, over a long period of time and in a wide variety of tests, been
shown to have predictive power, a statement connected with it is cloaked in this mantle.

The social sciences other than economics do not have such well-developed bodies of deductive
theory, and therefore this criterion of causality does not weigh as heavily in sociology, for in-
stance, as in economics. Rather, the other social sciences seem to substitute a weaker and more
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general criterion, that is, whether or not the statement of the relationship is accompanied by
other statements that seem to “explain” the “mechanism” by which the relationship operates.
Consider, for example, the relationship between the phases of the moon and the suicide rate.
The reason that sociologists do not call it causal is that there are no auxiliary propositions
that explain the relationship and describe an operative mechanism. On the other hand, the
relationship between broken homes and youth crime is often referred to as “causal,” presum-
ably because a large body of psychological theory serves to explain why a child raised without
one or the other parent, or in the presence of parental strife, should not adjust readily.

Furthermore, one can never decide with perfect certainty whether in any given situation one
variable “causes” a particular change in another variable. At best, given your particular
purposes in investigating a phenomena, you may be safe in judging that very likely there is
causal influence.

In brief, it is correct to say (as it is so often said) that correlation does not prove causation —
if we add the word “completely” to make it “correlation does not completely prove causation.”
On the other hand, causation can never be “proven” completely by correlation or any other
tool or set of tools, including experimentation. The best we can do is make informed judgments
about whether to call a relationship causal.

It is clear, however, that in any situation where we are interested in the possibility of causation,
we must at least know whether there is a relationship (correlation) between the variables of
interest; the existence of a relationship is necessary for a relationship to be judged causal even
if it is not sufficient to receive the causal label. And in other situations where we are not even
interested in causality, but rather simply want to predict events or understand the structure
of a system, we may be interested in the existence of relationships quite apart from questions
about causations. Therefore our next set of problems deals with the probability of there being
a relationship between two measured variables, variables that can take on any values (say, the
values on a test of athletic scores) rather than just two values (say, whether or not there has
been irradiation.)2

Another way to think about such problems is to ask whether two variables are independent of
each other — that is, whether you know anything about the value of one variable if you know
the value of the other in a particular case — or whether they are not independent but rather
are related.

29.3 A Note on Association Compared to Testing a Hypothesis

Problems in which we investigate a) whether there is an association, versus b) whether there
is a difference between just two groups, often look very similar, especially when the data
constitute a 2-by-2 table. There is this important difference between the two types of analysis,
however: Questions about association refer to variables — say weight and age — and it never

2For a much fuller discussion on causality and causation, see Simon and Burstein (1985).
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makes sense to ask whether there is a difference between variables (except when asking whether
they measure the same quantity). Questions about similarity or difference refer to groups of
individuals, and in such a situation it does make sense to ask whether or not two groups are
observably different from each other.

29.3.1 Example: Is Athletic Ability Directly Related to Intelligence?

A more specific version of our question: is there correlation between the two variables
or are they independent?

A scientist often wants to know whether or not two characteristics go together, that is, whether
or not they are correlated (that is, related or associated). For example, do young adults with
high athletic ability tend to also have high I.Q.s?

Hypothetical physical-education scores of a group of ten high-school boys are shown in Ta-
ble 29.1, ordered from high to low, along with the I.Q. score for each boy. The ranks for each
student’s athletic and I.Q. scores are then shown in the third and fourth columns:

Table 29.1: Hypothetical athletic and I.Q. scores for high school boys

Athletic Score I.Q. Score Athletic Rank I.Q.Rank
97 114 1 3
94 120 2 1
93 107 3 7
90 113 4 4
87 118 5 2
86 101 6 8
86 109 7 6
85 110 8 5
81 100 9 9
76 99 10 10

Figure 29.1 is a scatterplot with “Athletic Score” on the x-axis and “I.Q. Score” on the y-
axis. Each point on the plot corresponds to one row of Table 29.1 (and therefore one boy);
in particular each point is at the 𝑥, 𝑦 coordinate given by the values in “Athletic Score” and
“I.Q. Score”. For example the point for the first boy is at position x=97, y=114.

We want to know whether a high score on athletic ability tends to be found along with a high
I.Q. score more often than would be expected by chance. Therefore, our strategy is to see
how often high scores on both variables are found by chance. We do this by disassociating
the two variables and making two separate and independent universes, one composed of the
athletic scores and another of the I.Q. scores. Then we draw pairs of observations from the two
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Figure 29.1: Scatter plot of I.Q. Score as a function of Athletic Score

universes at random, and compare the experimental patterns that occur by chance to what
actually is observed to occur in the world.

The first testing scheme we shall use is similar to our first approach to the pig rations —
splitting the results into just “highs” and “lows.” We take ten cards, one of each denomination
from “ace” to “10,” shuffle, and deal five cards to correspond to the first five athletic ranks. The
face values then correspond to the I.Q. ranks. Under the benchmark hypothesis the athletic
ranks will not be associated with the I.Q. ranks. Add the face values in the first five cards
in each trial; the first hand includes 2, 4, 5, 6, and 9, so the sum is 26. Record, shuffle, and
repeat perhaps ten times. Then compare the random results to the sum of the observed ranks
of the five top athletes, which equals 17.

The following steps describe a slightly different procedure than that just described, because
this one may be easier to understand:

• Step 1. Convert the athletic and I.Q. scores to ranks. Then constitute a universe of
spades, “ace” to “10,” to correspond to the athletic ranks, and a universe of hearts, “ace”
to “10,” to correspond to the IQ ranks.

• Step 2. Deal out the well-shuffled cards into pairs, each pair with an athletic score and
an I.Q. score.

• Step 3. Locate the cards with the top five athletic ranks, and add the I.Q. rank scores
on their paired cards. Compare this sum to the observed sum of 17. If 17 or less, indicate
“yes,” otherwise “no.” (Why do we use “17 or less” rather than “less than 17”? Because
we are asking the probability of a score this low or lower.)

• Step 4. Repeat steps 2 and 3 ten times.
• Step 5. Calculate the proportion “yes.” This estimates the probability sought.
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In Table 29.2 we see that the observed sum (17) is lower than the sum of the top 5 ranks in all
but one (shown in bold) of the ten random trials (trial 5), which suggests that there is a good
chance (9 in 10) that the five best athletes will not have I.Q. scores that high by chance. But
it might be well to deal some more to get a more reliable average. We add thirty hands, and
thirty-nine of the total forty hands exceed the observed rank value, so the probability that the
observed correlation of athletic and I.Q. scores would occur by chance is about .025. In other
words, if there is no real association between the variables, the probability that the top 5 ranks
would sum to a number this low or lower is only 1 in 40, and it therefore seems reasonable to
believe that high athletic ability tends to accompany a high I.Q.

Table 29.2: 40 random trials of the athletic / IQ problem

Trial Sum of IQ Ranks <= observed (17)
1 26 No
2 23 No
3 22 No
4 37 No
5 16 Yes
6 22 No
7 22 No
8 28 No
9 38 No
10 22 No
11 35 No
12 36 No
13 31 No
14 29 No
15 32 No
16 25 No
17 25 No
18 29 No
19 25 No
20 22 No
21 30 No
22 31 No
23 35 No
24 25 No
25 33 No
26 30 No
27 24 No
28 29 No
29 30 No
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Trial Sum of IQ Ranks <= observed (17)
30 31 No
31 30 No
32 21 No
33 25 No
34 19 No
35 29 No
36 23 No
37 23 No
38 34 No
39 23 No
40 26 No

In fact we can apply an even simpler procedure to get the same result, by reasoning about the
individual trial.

One trial in our procedure is:

• Step 2. Deal out the well-shuffled cards into pairs, each pair with an athletic score and
an I.Q. score.

• Step 3. Locate the cards with the top five athletic ranks, and add the I.Q. rank scores
on their paired cards. Compare this sum to the observed sum of 17. If 17 or less, indicate
“yes,” otherwise “no.” (Why do we use “17 or less” rather than “less than 17”? Because
we are asking the probability of a score this low or lower.)

Now consider the 5 IQ rank cards. In the procedure above, we found these by first pairing
the athletic ranks and the IQ ranks, then selecting the IQ ranks corresponding to the top 5
athletic ranks. A little thought may persuade you, that by doing this, we have have a random
selection of 5 IQ ranks. We got that random selection by pairing, selecting on athletic rank —
but the initial pairing and selection will do nothing other than giving us one particular set of
randomly chosen 5 IQ rank cards. So we can simplify our procedure even further by missing
out the pairing and selecting by rank steps; we can just shuffle the IQ rank cards and deal out
5 to be our randomly selected IQ ranks.

Note 71: Notebook: Athletic ability and IQ

• Download notebook
• Interact

To simulate this problem in Python, we first create an array containing the I.Q. rankings of
the top 5 students in athletics. The sum of these I.Q. rankings constitutes the observed result
to be tested against randomly-drawn samples. We observe that the actual I.Q. rankings of
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the top five athletes sums to 17. The more frequently that the sum of 5 randomly-generated
rankings (out of 10) is as low as this observed number, the higher is the probability that there
is no relationship between athletic performance and I.Q. based on these data.

First we record the 1 through 10 into array iq_ranks. Then we shuffle the numbers so the
rankings are in a random order. Then select the first 5 of these numbers and put them
in another array, top_5, and sum them, putting the result in top_5_sum. We repeat this
procedure N = 10000 times, recording each result in a scorekeeping vector: z. Graphing z, we
get a histogram that shows us how often our randomly assigned sums are equal to or below
17.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Number of repeats.
n_trials = 10000
# The IQ ranks, ready for shuffling.
iq_ranks = np.arange(1, 11) # 1 through 10.
# Scorekeeping array.
results = np.zeros(n_trials)

# Repeat the experiment 10,000 times.
for i in range(n_trials):

# Shuffle the ranks.
shuffled = rnd.permuted(iq_ranks)
# Take the first 5 ranks.
top_5 = shuffled[:5]
# Sum those ranks.
top_5_sum = np.sum(top_5)
# Keep track of the result of each trial.
results[i] = top_5_sum
# End the experiment, go back and repeat.

# Produce a histogram of trial results.
# Make the bins be the integers from 10 through 45.
plt.hist(results, bins=np.arange(10, 46))
plt.title('Sums of 5 ranks selected at random');
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We see that in only about 1 % of the trials did random selection of ranks produce a total of
17 or lower. Python can calculate this for us directly:

# Determine how many trials produced sums of ranks <= 17 by chance.
k = np.sum(results <= 17)
# The proportion.
kk = k / n_trials
# Show the result.
kk

np.float64(0.0143)

End of notebook: Athletic ability and IQ

athlete_iq starts at Note 71.

Why do we sum the ranks of the first five athletes rather than taking the sum of the top three,
say? Indeed, we could have looked at the top three, two, four, or even six or seven. The
first reason for splitting the group in half is that an even split uses the available information
more fully, and therefore we obtain greater efficiency. (I cannot prove this formally here, but
perhaps it makes intuitive sense to you.) A second reason is that getting into the habit of
always looking at an even split reduces the chances that you will pick and choose in such a
manner as to fool yourself. For example, if the I.Q. ranks of the top five athletes were 3, 2,
1, 10, and 9, we would be deceiving ourselves if, after looking the data over, we drew the line
between athletes 3 and 4. (More generally, choosing an appropriate measure before examining
the data will help you avoid fooling yourself in such matters.)
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A simpler but less efficient approach to this same problem is to classify the top-half athletes
by whether or not they were also in the top half of the I.Q. scores. Of the first five athletes
actually observed, four were in the top five I.Q. scores. We can then shuffle five black and
five red cards and see how often four or more (that is, four or five) blacks come up with the
first five cards. The proportion of times that four or more blacks occurs in the trial is the
probability that an association as strong as that observed might occur by chance even if there
is no association. Table 29.3 shows a proportion of five trials out of twenty.

Table 29.3: Results of 20 random trials of the top-5 rank counts

Trial Score Yes or No
1 4 Yes
2 2 No
3 2 No
4 2 No
5 3 No
6 2 No
7 4 Yes
8 3 No
9 3 No
10 4 Yes
11 3 No
12 1 No
13 3 No
14 3 No
15 4 Yes
16 3 No
17 2 No
18 2 No
19 2 No
20 4 Yes

Note 70: Notebook: Athletic ability and IQ using rank counts

• Download notebook
• Interact

In the Python code below, we first note that the top 5 athletes had 4 of the top 5 I.Q. scores.
So we constitute the set of 10 IQ rankings array iq_ranks. We then shuffle iq_ranks and
select the first 5 I.Q. rankings (out of 10). We count (sum) how many are in the top 5, and
keep track of the result. After repeating 10,000 times using a for loop, we find out how often
we select 4 of the top 5.
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import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Number of repeats.
n_trials = 10000
# The IQ ranks, ready for shuffling.
iq_ranks = np.arange(1, 11) # 1 through 10.
# Scorekeeping array.
results = np.zeros(n_trials)

for i in range(n_trials):
# Shuffle the ranks.
shuffled = rnd.permuted(iq_ranks)
# Take the first 5 ranks.
top_5 = shuffled[:5]
# Everything up until this point is the same as the code above.
# Here is the difference.
# Check whether the selected IQ ranks are in the top 5.
are_top = top_5 <= 5
# Count how many were in the top 5
n_are_top = np.sum(are_top)
# Keep track of the result of each trial.
results[i] = n_are_top
# End the experiment, go back and repeat.

# Determine how many trials produced 4 or more top ranks by chance.
k = np.sum(results >= 4)
# Convert to a proportion.
kk = k / n_trials
# Show the result.
kk

np.float64(0.0982)

End of notebook: Athletic ability and IQ using rank counts

athlete_iq_rank_count starts at Note 70.

So far we have proceeded on the theory that if there is any relationship between athletics and
I.Q., then the better athletes have higher rather than lower I.Q. scores. The justification for
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this assumption is that past research suggests that it is probably true. But if we had not had
the benefit of that past research, we would then have had to proceed somewhat differently;
we would have had to consider the possibility that the top five athletes could have I.Q. scores
either higher or lower than those of the other students. The results of the “two-tail” test would
have yielded odds weaker than those we observed.

29.3.2 Example: Athletic ability and I.Q. — a third way

The example in Section 29.3.1 investigated the relationship between I.Q. and athletic score by
ranking the two sets of scores. But ranking of scores loses some efficiency because it uses only
an “ordinal” (rank-ordered) rather than a “cardinal” (measured) scale; the numerical shadings
and relative relationships are lost when we convert to ranks. Therefore let us consider a test
of correlation that uses the original cardinal numerical scores.

First a little background: Figure 29.2 and Figure 29.3 show two hypothetical cases of very
high association among the I.Q. and athletic scores used in previous examples. Figure 29.2
indicates that the higher the I.Q. score, the higher the athletic score. With a boy’s athletic
score you can thus predict quite well his I.Q. score by means of a hand-drawn line — or vice
versa. The same is true of Figure 29.3, but in the opposite direction. Notice that even though
athletic score is on the x-axis (horizontal) and I.Q. score is on the y-axis (vertical), the athletic
score does not cause the I.Q. score. (It is an unfortunate deficiency of such diagrams that some
variable must arbitrarily be placed on the x-axis, whether you intend to suggest causation or
not.)
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Figure 29.2: Hypothetical Scores for I.Q. and Athletic Ability — 1

In Figure 29.4, which plots the scores as given in Table 29.1, the prediction of athletic score
given I.Q. score, or vice versa, is less clear-cut than in Figure 29.2. On the basis of Figure 29.4
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Figure 29.3: Hypothetical Scores for I.Q. and Athletic Ability — 2

alone, one can say only that there might be some association between the two variables.
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Figure 29.4: Given Scores for I.Q. and Athletic Ability

29.4 Correlation with sum of products

Now let us take advantage of a handy property of numbers. The more closely two sets of
numbers match each other in order, the higher the sums of their products. Consider the
following arrays of the numbers 1, 2, and 3:
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Columns in matching order

1 ∗ 1 = 1
2 ∗ 2 = 4
3 ∗ 3 = 9

SUM = 14

Columns not in matching order

1 ∗ 2 = 2
2 ∗ 3 = 6
3 ∗ 1 = 3

SUM = 11

I will not attempt a mathematical proof, but the reader is encouraged to try additional combi-
nations to be sure that the highest sum is obtained when the order of the two columns is the
same. Likewise, the lowest sum is obtained when the two columns are in perfectly opposite
order:

Columns in opposite order

1 ∗ 3 = 3
2 ∗ 3 = 4
3 ∗ 1 = 3

SUM = 10

Consider the cases in Table 29.4 which are chosen to illustrate a perfect (linear) association
between x (Column 1) and y1 (Column 2), and also between x (Column 1) and y2 (Column
4); the numbers shown in Columns 3 and 5 are those that would be consistent with perfect
associations. Notice the sum of the multiples of the x and y values in the two cases. It is
either higher (x * y1) or lower (x * y2) than for any other possible way of arranging the y’s.
Any other arrangement of the y’s (y3, in Column 6, for example, chosen at random), when
multiplied by the x’s in Column 1, (x * y3), produces a sum that falls somewhere between
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the sums of x * y1 and x * y2, as is the case with any other set of y3’s which is not perfectly
correlated with the x’s.

Table 29.4: Comparison of Sums of Multiplications

Strong positive relationship
Strong negative
relationship Random Pairings

X Y1 X * Y1 Y2 X * Y2 Y3 X * Y3
2 2 4 10 20 4 8
4 4 8 8 32 8 32
6 6 36 6 36 6 36
8 8 64 4 32 2 16
10 10 100 2 20 10 100
Sums 220 140 192

29.4.1 Example: sum of products correlation of athletic and IQ scores

Table 29.5 shows that the sum of the products of the observed I.Q. scores multiplied by athletic
scores (column 7) is between the sums that would occur if the I.Q. scores were ranked from
best to worst (column 3) and worst to best (column 5). The extent of correlation (association)
can thus be measured by whether the sum of the multiples of the observed x and y values is
relatively much higher or much lower than are sums of randomly-chosen pairs of x and y.

Table 29.5: Sums of Products: IQ and Athletic Scores

1 2 3 4 5 6 7
Athletic
score

Hypothetical
IQ pos

Col 1 x
Col 2

Hypothetical
IQ neg

Col 1 x
Col 4

Actual
IQ

Col 1 x
Col 6

97 120 11640 99 9603 114 11058
94 118 11092 100 9400 120 11280
93 114 10602 101 9393 107 9951
90 110 9900 107 9630 113 10170
87 113 9831 109 9483 118 10266
86 109 9374 113 9718 101 8686
86 107 9202 110 9460 109 9374
85 101 8585 114 9690 110 9350
81 100 8100 118 9558 100 8100
76 99 7524 120 9120 99 7524
SUMS 95850 95055 95759

Table 29.5 show three cases of products:
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1. Perfect positive correlation (hypothetical); column 3
2. Perfect negative correlation (hypothetical); column 5
3. Observed; column 7

Now we attack the I.Q. and athletic-score problem using the property of numbers just discussed.
First multiply the 𝑥 and 𝑦 values of the actual observations, and sum them; we find a total of
95,759 (Table 29.5). Then write the ten observed I.Q. scores on cards, and assign the cards in
random order to the ten athletes, as shown in the column for trial 1 in Table 29.6.

Multiply the random IQ scores by their paired 𝑥’s (Athletic scores), and sum to give the values
at the bottom of Table 29.6. If the I.Q. scores and athletic scores are positively associated,
that is, if high I.Q.s and high athletic scores go together, then the sum of the multiplications
for the observed sample will be higher than for most of the random trials. (If high I.Q.s go
with low athletic scores, the sum of the multiplications for the observed sample will be lower
than most of the random trials.)

Table 29.6: Random Draws of IQ scores paired against athletic scores

Athletic
score 1 2 3 4 5 6 7 8 9 10
97 100 110 101 113 107 109 109 114 100 118
94 120 109 99 101 100 113 107 110 118 107
93 114 113 113 120 99 120 100 113 99 100
90 101 120 114 99 110 107 101 107 107 120
87 118 101 110 107 118 100 120 99 114 114
86 110 114 118 114 101 101 110 109 101 110
86 107 100 120 109 114 114 113 120 120 101
85 99 99 107 110 120 110 118 100 109 113
81 113 118 100 118 109 99 99 118 113 109
76 109 107 109 100 113 118 114 101 110 99
Product
sums

95452 95521 95389 95520 95259 95512 95352 95578 95331 95626

More specifically, by the steps:

• Step 1. Write the ten I.Q. scores on one set of cards, and the ten athletic scores on
another set of cards.

• Step 2. Pair the I.Q. and athletic-score cards at random. Multiply the scores in each
pair, and add the results of the ten multiplications.

• Step 3. Subtract the experimental sum in step 2 from the observed sum, 95,759.
• Step 4. Repeat steps 2 and 3 ten times.

535



• Step 5. Compute the proportion of trials where the difference is negative, which es-
timates the probability that an association as strong as the observed would occur by
chance.

The sums of the multiplications for 10 trials are shown in Table 29.6. No random-trial sum was
as high as the observed sum, which suggests that the probability of an association this strong
happening by chance is so low as to approach zero. (An empirically-observed probability is
never actually zero.)

This algorithm can be solved particularly easily with Python. The arrays ath and iq in
the notebook below list the athletic scores and the I.Q. scores respectively of the 10 “actual”
students. We multiply the corresponding elements of these arrays and proceed to compare the
sum of these multiplications to the sums of experimental multiplications in which the elements
of iq have been randomly permuted, to form random pairings.

Finally, we count (sum) the trials in which the sum of the products of the randomly-paired
athletic and I.Q. scores equals or exceeds the sum of the products in the observed data.

Notebook with data file

As have seen already (see Note 36),the download link points to a .zip file containing the
notebook and the data file the notebook will read.

Note 71: Notebook: Association of athletic and IQ scores

• Download zip with notebook + data file
• Interact

# Load the Numpy library for arrays.
import numpy as np
# Load the Pandas library for loading and selecting data.
import pandas as pd
# Plotting library.
import matplotlib.pyplot as plt

# Set up the random number generator
rnd = np.random.default_rng()

We load the file containing the data:

# Read the data file containing athletic and IQ scores.
ath_iq_df = pd.read_csv('data/athletic_iq.csv')
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# Show the data frame.
ath_iq_df

athletic_score iq_score athletic_rank iq_rank
0 97 114 1 3
1 94 120 2 1
2 93 107 3 7
3 90 113 4 4
4 87 118 5 2
5 86 101 6 8
6 86 109 7 6
7 85 110 8 5
8 81 100 9 9
9 76 99 10 10

# Turn athletic and IQ scores into arrays.
ath = np.array(ath_iq_df['athletic_score'])
iq = np.array(ath_iq_df['iq_score'])

# Multiply the two sets of scores together.
actual_prod = ath * iq
# Sum the results — the "observed value."
actual_sum = np.sum(actual_prod)
actual_sum

np.int64(95759)

# Set the number of trials
n_trials = 10_000

# An empty array to store the trial results.
results = np.zeros(n_trials)

# Do 10,000 experiments.
for i in range(n_trials):

# Shuffle the IQ scores so we can pair them against athletic scores.
shuffled = rnd.permuted(iq)
# Multiply the shuffled IQ scores by the athletic scores. (Note that we
# could shuffle the athletic scores too but it would not achieve any
# greater randomization, because shuffling one of the set of scores
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# already gives a random pairing between the sets of scores.
fake_prod = ath * shuffled
# Sum the randomized multiplications.
fake_sum = np.sum(fake_prod)
# Subtract the sum from the sum of the "observed" multiplication.
diff = actual_sum - fake_sum
# Keep track of the result in results array.
results[i] = diff
# End one trial, go back and repeat until 10000 trials are complete.

# Obtain a histogram of the trial results.
plt.hist(results, bins=25)
plt.title('Random sums of products')
plt.xlabel('Observed sum minus sum of random pairing')
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We see that obtaining a chance trial result as great as that observed was rare. Python will
calculate this proportion for us:

# Determine in how many trials the random sum of products was less than
# the observed sum of products.
k = np.sum(results <= 0)
# Convert to a proportion.
kk = k / n_trials
# Print the result.
print('Proportion of random pairings giving sum <= observed:', kk)

Proportion of random pairings giving sum <= observed: 0.0111
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End of notebook: Association of athletic and IQ scores

athlete_iq starts at Note 71.

29.4.2 Example: Correlation Between Adherence to Medication Regime and
Change in Cholesterol

Efron and Tibshirani (1993, 72) show data on the extents to which 164 men a) took the
drug prescribed to them (cholestyramine), and b) showed a decrease in total plasma choles-
terol. Table 29.7 shows the first 15 of the values (note that a positive value in the “Decrease
in cholesterol” column denotes a decrease in cholesterol, while a negative value denotes an
increase.)

Table 29.7: First 15 rows of compliance / blood cholesterol

% compliance Decrease in cholesterol
0 -5.25

27 -1.50
71 59.50
95 32.50
0 -7.25

28 23.50
71 14.75
95 70.75
0 -6.25

29 33.00
72 63.00
95 18.25
0 11.50

31 4.25
72 0.00

The aim is to assess the effect of the compliance on the improvement. There are two related
issues:

1. What form of regression should be fitted to these data, which we address later, and
2. Is there reason to believe that the relationship is meaningful? That is, we wish to

ascertain if there is any meaningful correlation between the variables — because if there
is no relationship between the variables, there is no basis for regressing one on the other.
Sometimes people jump ahead in the latter question to first run the regression and
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then ask whether the regression slope coefficient(s) is (are) different than zero, but this
usually is not sound practice. The sensible way to proceed is first to graph the data to
see whether there is visible indication of a relationship.

Efron and Tibshirani do this, and they find sufficient intuitive basis in the graph to continue
the analysis (see Figure 29.5).
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Figure 29.5: Cholesterol decrease as function of compliance

The next step is to investigate whether a measure of relationship is statistically convincing;
this we do as follows:

1. Multiply the observed values for each of the 164 participants on the independent 𝑥 vari-
able (cholestyramine — percent of prescribed dosage actually taken) and the dependent
𝑦 variable (cholesterol), and sum the results — it’s 439,141.

2. Randomly shuffle the dependent variable 𝑦 values among the participants. The sampling
is being done without replacement, though an equally good argument could be made for
sampling with replacement; the results do not differ meaningfully, however, because the
sample size is so large.

3. Then multiply these 𝑥 and 𝑦 hypothetical values for each of the 164 participants, sum
the results and record.

4. Repeat steps 2 and 3 perhaps 10,000 times.
5. Determine how often the shuffled sum-of-products exceeds the observed value (439,141).

The following notebook in Python provides the solution:
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Note 72: Notebook: Testing association of compliance and cholesterol values

• Download zip with notebook + data file
• Interact

# Load the Numpy library for arrays.
import numpy as np
# Load the Pandas library for loading and selecting data.
import pandas as pd
# Plotting library.
import matplotlib.pyplot as plt

# Set up the random number generator
rnd = np.random.default_rng()

# Data as arrays.
df = pd.read_csv('data/cholost.csv')
compliance = np.array(df['percent_compliance'])
cholesterol = np.array(df['cholesterol_decrease'])

# Rename the two sequences to match the description in the text.
x = compliance
y = cholesterol

# Step 1 above
actual_prod = x * y
# Note: actual_sum = 439,141
actual_sum = np.sum(actual_prod)
# Show the result.
actual_sum

np.float64(439140.75)

# Set the number of trials
n_trials = 10_000

# An empty array to store the trial results.
results = np.zeros(n_trials)

# Do 10,000 experiments (step 4)
for i in range(n_trials):
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# Step 2 above.
y_random = rnd.permuted(y)
# Step 3 above.
fake_prod = x * y_random
fake_sum = np.sum(fake_prod)
# Step 3 above
results[i] = fake_sum
# Step 4 above

# Step 5 above
k = np.sum(results >= actual_sum)
kk = k / n_trials

print('Proportion product sums >= observed:', kk)

Proportion product sums >= observed: 0.0

End of notebook: Testing association of compliance and cholesterol values

compliance_cholesterol starts at Note 72.

Interpretation: 10,000 simulated random shufflings never produced a sum-of-products as high
as the observed value. Hence we conclude that random chance is a very unlikely explanation
for the observed correlation.

29.5 The correlation coefficient

We have been using the sum of products as a measure of straight-line (linear) association
between two variables. We found that the sum of products for the athletic and IQ variables
(ath and iq) was 95759, and we showed that the sum of products is higher for pairings of
ath and iq with a higher degree of linear association. Now let us consider compliance and
cholesterol above; the sum of products for compliance and cholesterol was 439141. Notice
the compliance and cholesterol sum of products is much higher than for ath and iq — but,
for various reasons that we explain below, that does not tell us whether the association of
the scores is higher for the compliance / cholesterol values than the athletic / IQ scores. We
would like a version of the sum of products procedure that could give us a measure of linear
association that we could compare between different pairs of sequences. This is the purpose
of the correlation coefficient.
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The first problem that makes it hard to compare the sum of product scores is that the sum of
products depends on the number of elements in the sequence. ath (and iq) have 10 elements,
whereas compliance (and cholesterol) have 164 elements. The sum of products is a sum; all
other things being equal, the more values you sum, the higher the sum; all other things being
equal, the sum of 164 elements will be greater than the sum of 10 elements. We can solve this
problem by dividing the sum of products by the number of elements in that sum, to get the
mean of the products. The mean of product values for the athletic / IQ scores is 95759 / 10
= 9575.9. The mean of products for compliance / cholesterol is 439141 / 164 = 2677.69.

We have solved one problem in comparing the measure by taking the mean of products — the
value no longer depends on the number of elements. We have other problems. For example,
consider the IQ scores. We have used the raw IQ scores, on their usual scale, where 100 is
the average IQ for the general population. Our raw IQ scores have a mean of 109.1. But we
could also have scored IQ in another way. For example, we could have recorded the difference
from 100 instead of the raw value, to get the values in column 2 of Table 29.8. Call these the
“IQ-100” scores. IQ-100 scores have a mean of 9.1.

Table 29.8: Means of Products: IQ, IQ-100 and Athletic Scores

1 2 3 4 5
Athletic score Original IQ Col 1 x Col 2 IQ-100 Col 2 x Col 4
97 114 11058 14 1358
94 120 11280 20 1880
93 107 9951 7 651
90 113 10170 13 1170
87 118 10266 18 1566
86 101 8686 1 86
86 109 9374 9 774
85 110 9350 10 850
81 100 8100 0 0
76 99 7524 -1 -76
SUMS 95759 8259
MEANS 9575.9 825.9

Notice that the mean product for the IQ-100 scores is much smaller than the mean for the
product with the original IQ values, because the IQ element in the product is smaller, so the
products will be smaller, and the mean product will be smaller. However, it might be obvious
that the association of the IQ and athletic scores remains the same after we have subtracted
100 from the IQ; higher IQ values on either scale are still associated with higher athletic scores.
Think of the association as a straight-line relationship in a scatter plot, with the athletic scores
on the x-axis, and the IQ scores on the y-axis. Figure 29.1 has the original scatter plot with
the athletic scores on the x-axis and the original IQ scores on the y-axis. The points appear
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to scatter around some straight line we could draw. Figure 29.6 shows the scatterplot of the
original IQ score against the athletic scores on the left plot (as for Figure 29.1) and the IQ-100
scores against the athletic scores in the right plot. As you can see, subtracting 100 from the
IQ values just moved the points on the graph down by 100 on the y-axis — but the slope
of the line relating the two must be the same. The slope is a measure of how much the IQ
score increases as the athletic score increases — it is therefore a good measure of the linear
association between athletic score and IQ score. Because the slope of our potential line should
not change between the original IQ score and the IQ-100 score, a good measure of association
should not change, when we do this subtraction. That is not true of the mean product that is
much smaller after the subtraction.
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Figure 29.6: Scatter plot of IQ Score, IQ-100 as function of Athletic Score

So, the mean product will change as we add or subtract values to one or both of the sequences.
You might also be able to see that the mean product will change if we multiply or divide the
values in the sequence by some number. In summary, the mean product depends on position
or location of the values in the sequence (on the x and y axes), and the scale or units of the
values.

We would like some measure of association that does not depend on the location and scale of
the sequences. A simple approach is to put each sequence on a standard scale, by converting
the original sequence values to standard scores (see Section 16.9).

We do this by:

1. Subtracting the mean value from each element in the sequence to give the deviations.
2. Dividing the deviations by a measure of spread — the standard deviation (see Sec-

tion 16.7).
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See Table 29.9 for an example of applying this algorithm to the IQ scores. We get the deviations
by subtracting the mean IQ (109.1), and the standard scores by dividing the deviations by the
IQ standard deviation (7.02).

Table 29.9: IQ, deviations and standard scores

Original IQ IQ deviations Standard scores
114 4.9 0.7
120 10.9 1.55
107 -2.1 -0.3
113 3.9 0.56
118 8.9 1.27
101 -8.1 -1.15
109 -0.1 -0.01
110 0.9 0.13
100 -9.1 -1.3
99 -10.1 -1.44

After we apply this procedure to both sequences, they are both in the same standard units.
The mean product of these standard units is therefore a standard measure of association, called
the Pearson product-moment correlation coefficient, or just the correlation coefficient. We use
the letter 𝑟 for the value of the correlation coefficient. Table 29.10 shows the mean of products
calculation on standard scores athletic ability and IQ, to get the 𝑟 value.

Table 29.10: 𝑟 for Athletic and IQ scores

1 2 3 4 5

Athletic score Original IQ
Standardized
athletic score

Standardized
IQ Col 3 x Col 4

97 114 1.6 0.7 1.11
94 120 1.09 1.55 1.69
93 107 0.92 -0.3 -0.28
90 113 0.42 0.56 0.23
87 118 -0.08 1.27 -0.11
86 101 -0.25 -1.15 0.29
86 109 -0.25 -0.01 0
85 110 -0.42 0.13 -0.05
81 100 -1.09 -1.3 1.42
76 99 -1.93 -1.44 2.78
Mean product
(r value)

0.71
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Because the sequences for the correlation coefficient 𝑟 are in the same units, we can compare
correlation coefficients between different sequences, to give a standard measure of association.
For example, we can run the same calculation on the compliance and cholesterol values, to get
the 𝑟 value (correlation coefficient) for these sequences. Let’s do that in Python:

Note 73: Notebook: Correlation coefficient for compliance and cholesterol

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

df = pd.read_csv('data/cholost.csv')
compliance = np.array(df['percent_compliance'])
cholesterol = np.array(df['cholesterol_decrease'])

# Compliance as standard scores.
dev_compliance = compliance - np.mean(compliance) # Deviations.
stdev_compliance = np.sqrt(np.mean(dev_compliance ** 2)) # Standard deviation.
# We could also have used np.std to do the calculation above.
std_compliance = dev_compliance / stdev_compliance # Standard scores.

# Cholesterol as standard scores.
dev_cholesterol = cholesterol - np.mean(cholesterol) # Deviations.
stdev_cholesterol = np.sqrt(np.mean(dev_cholesterol ** 2)) # Standard deviation.
# We could also have used np.std to do the calculation above.
std_cholesterol = dev_cholesterol / stdev_cholesterol # Standard scores.

# r value is mean of products for standardized scores.
r = np.mean(std_compliance * std_cholesterol)

print('r for compliance / cholesterol is:', np.round(r, 2))

r for compliance / cholesterol is: 0.68

End of notebook: Correlation coefficient for compliance and cholesterol

r_for_cholesterol starts at Note 73.
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Notice that the 𝑟 value is higher for the athletic and IQ scores (0.71) than it is for compliance
and cholesterol (0.68). Because we have measured the association in standard units, we can
compare these values, and say there is a slightly stronger linear association for our athletic
and IQ scores, than there is for our compliance and cholesterol scores.

29.5.1 Correlations are symmetrical

You might be able to see from the definition of the calculation above, that the correlation
coefficient 𝑟 between ath and iq must be the same as the correlation coefficient (𝑟) between
iq and ath — and in general the correlation coefficient between some sequence 𝑥 and another
𝑦 is equal to the correlation coefficient between 𝑦 and 𝑥.
Why? Remember that the correlation coefficient is the mean of the product of the standard
scores.

Let us first calculate the standard scores for ath and iq:

std_ath = (ath - np.mean(ath)) / np.std(ath)
std_iq = (iq - np.mean(iq)) / np.std(iq)

Now calculate the correlation coefficient.

print('r value for "ath" and "iq":', np.mean(std_ath * std_iq))

r value for "ath" and "iq": 0.7093117740309458

But multiplication is commutative — changing the order does not change the result — so
𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎. This means that the std_ath * std_id gives the same array as std_id *
std_ath, and:

print('r value for "iq" and "ath":', np.mean(std_iq * std_ath))

r value for "iq" and "ath": 0.7093117740309458

29.5.2 The correlation coefficient in Python

NumPy has a function np.corrcoef for calculating the correlation coefficient between two
sequences directly.

Here is np.corrcoef in action:
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corr_arr = np.corrcoef(ath, iq)
corr_arr

array([[1. , 0.70931177],
[0.70931177, 1. ]])

Notice that np.corrcoef returns a two-dimensional array of the correlations between all pos-
sible pairs of the two sequences. This results in a 2 by 2 array, where the top-left value is the
correlation coefficient 𝑟 between ath and ath — the 𝑟 value for a sequence and itself is always
1. The bottom right value is the 𝑟 value for iq and iq — again, this must be 1. The top right
value is the 𝑟 between ath and iq, and the bottom left value is the 𝑟 between iq and ath,
and as you saw above, these must be equal. We are usually interested in the 𝑟 between the
two sequences we send to np.corrcoef, so we usually just want the top-right (or bottom-left)
value.

We can select the first row of the 2D array like this:

# First row of the 2D array.
corr_arr[0]

array([1. , 0.70931177])

We can select the first row and the first column by giving two indices between the square
brackets, where the first index is for the row (select the first (0) row), and the second is for
the column (select the second (1) column):

# Select the first row, second column of the 2D array.
# This is the top-right value.
corr_arr[0, 1]

np.float64(0.7093117740309459)

Therefore, to get the correlation coefficient between two sequences, we can do:

# Select top-right value from correlation coefficient array.
np.corrcoef(ath, iq)[0, 1]

np.float64(0.7093117740309459)
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29.5.3 Test linear association with the correlation coefficient

Above we used the sum-of-products calculation to see if the actual observed sum of products
was unusual in the null-world. We simulated sum of product values in the null-world by
permuting one of the sequences, and recalculating the sum of products.

We could use the correlation coefficient instead of the sum of products as our measure of
association, and simulate correlation coefficients in the null-world. We will come to the same
conclusion using sum of products as we would for correlation coefficients because they are
equivalent when comparing between two different orderings of the same sequences of values.
The only advantage of the correlation coefficient for this case is that NumPy has the ready-
made function np.corrcoef to do the calculation. Here is the test for linear association using
the correlation coefficient instead of the sum of products. Compare the procedure below to
Section 29.4.1.

Note 74: Notebook: Association of athletic and IQ scores with 𝑟

• Download zip with notebook + data file
• Interact

# Load the Numpy library for arrays.
import numpy as np
# Load the Pandas library for loading and selecting data.
import pandas as pd
# Plotting library.
import matplotlib.pyplot as plt

# Set up the random number generator
rnd = np.random.default_rng()

# Read the data file containing athletic and IQ scores.
ath_iq_df = pd.read_csv('data/athletic_iq.csv')

# Turn athletic and IQ scores into arrays.
ath = np.array(ath_iq_df['athletic_score'])
iq = np.array(ath_iq_df['iq_score'])

# Calculate, select correlation coefficient.
actual_r = np.corrcoef(ath, iq)[0, 1]

# Set the number of trials for the null-world simulation.
n_trials = 10_000
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# An empty array to store the trial results.
results = np.zeros(n_trials)

# Do 10,000 experiments.
for i in range(n_trials):

# Shuffle the IQ scores so we can pair them against athletic scores.
shuffled = rnd.permuted(iq)
# Calculate the correlation coefficient.
fake_r = np.corrcoef(ath, shuffled)[0, 1]
# Keep track of the result in results array.
results[i] = fake_r
# End one trial, go back and repeat until 10000 trials are complete.

# Obtain a histogram of the trial results.
plt.hist(results, bins=25)
plt.title('Random correlation coefficients')
plt.xlabel('Observed r values from random pairing')

# Determine in how many trials the random r value was greater than
# the observed r value.
k = np.sum(results >= actual_r)
# Convert to a proportion.
kk = k / n_trials
# Print the result.
print('Proportion of random pairings giving r >= observed:', kk)

Proportion of random pairings giving r >= observed: 0.0111
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End of notebook: Association of athletic and IQ scores with 𝑟

athlete_iq_cc starts at Note 74.

Notice we get a very similar proportion (p-value) with the correlation coefficient to the one
from sum of products in Section 29.4.1; in fact, the p-values only differ because the p-value is
itself somewhat random, as it derives from (many) random samples.

29.6 Testing for a relationship between counted-data variables

29.6.1 Example: Drinking Beer And Being In Favor of Selling Beer

Earlier in this chapter, we analyzed measured values for athletic ability and I.Q. We can use
them in their original “cardinal” form, or split them up into “high” and “low” groups. Often,
however, the individual observations are recorded only as categories such “yes” or “no,” which
makes it more difficult to ascertain the existence of a relationship. Consider the poll responses
in Table 29.11 to two public-opinion survey questions: “Do you drink beer?” and “Are you in
favor of a local option on the sale of beer?”.3

Table 29.11: Results of Observed Sample For beer poll

Do you favor local option on the sale of beer? Do you drink beer?
Yes No Total

3These data are based on an example in (Dixon and Massey Jr 1983, 278, example 13-5), in which the problem
is tackled conventionally with a chi-square test.
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Favor 45 20 65
Don’t favor 7 6 13
Total 52 26 78

Here is the statistical question: Is a person’s opinion on “local option” related to whether or
not they drink beer? Our resampling solution begins by noting that there are seventy-eight
respondents, sixty-five of whom approve local option and thirteen of whom do not. Therefore
write “approve” on sixty-five index cards and “not approve” on thirteen index cards. Now
take another set of seventy-eight index cards, preferably of a different color, and write “yes”
on fifty-two of them and “no” on twenty-six of them, corresponding to the numbers of people
who do and do not drink beer in the sample. Now lay them down in random pairs, one from
each pile.

If there is a high association between the variables, then real life observations will bunch up
in the two diagonal cells in the upper left and lower right in Table 29.11. (Ignore the “total”
data for now.) Put another way, people filling in the upper left and lower right cells are people
with views compatible with their drinking habits (drink-yes / favor, or drink-no / don’t favor).
Conversely, people filling in the lower left and upper right cells have views incompatible with
their drinking habits (drink-yes, don’t favor, or drink-no, favor). Adding up the upper left /
lower right diagonal gives us the total number of compatible responses, and adding the lower
left / upper right diagonal gives us the incompatible total. To get an index of how strongly
the table data represents compatible responses, we can subtract the incompatible total (lower
left plus upper right) from the compatible total (upper left plus lower right) for the observed
data: (45 + 6) - (20 + 7) = 24. Then compare this difference to the comparable differences
found in random trials. The proportion of times that the simulated-trial difference exceeds
the observed difference is the probability that the observed difference of +24 might occur by
chance, even if there is no relationship between the two variables. (Notice that, in this case,
we are working on the assumption that beer drinking is positively associated with approval of
local option and not the inverse. We are interested only in differences that are equal to or
exceed +24 when the northeast-southwest diagonal is subtracted from the northwest-southeast
diagonal.)

We can carry out a resampling test with this procedure:

• Step 1. Write “approve” on 65 and “disapprove” on 13 red index cards, respectively;
write “Drink” and “Don’t drink” on 52 and 26 white cards, respectively.

• Step 2. Pair the two sets of cards randomly. Count the numbers of the four possible
pairs: (1) “approve-drink,” (2) “disapprove-don’t drink,” (3) “disapprove-drink,” and
(4) “approve-don’t drink.” Record the number of these combinations, as in Table 29.12,
where columns 1-4 correspond to the four data cells in Table 29.11.

• Step 3. Add (column 1 plus column 4), then add (column 2 plus column 3), and
subtract the result in the second parenthesis from the result in the first parenthesis. If
the difference is equal to or greater than 24, record “yes,” otherwise “no.”
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• Step 4. Repeat steps 2 and 3 perhaps a hundred times.
• Step 5. Calculate the proportion “yes,” which estimates the probability that an associ-

ation this great or greater would be observed by chance.

Table 29.12: Results of one random trial of the beer poll problem

1 2 3 4 5

Trial
Approve
Yes

Approve
No

Disapprove
Yes

Disapprove
No

(Col 1 + Col 4) -
(Col 2 + Col 3)

1 43 22 9 4 47 - 31 = 16

Table 29.12 shows the result of one such trial. When we run a series of ten trials such trials,
it indicates that the observed difference is very often exceeded, which suggests that we have
no good evidence here for a relationship between beer drinking and opinion.

The Python notebook below does this repetitively. From the “actual” sample results we know
that 52 respondents drink beer and 26 do not. We create the array “drink” with 52 1’s for
those who drink beer, and 26 0’s for those who do not. We also create the array “sale” with
65 1’s (approve) and 13 0’s (disapprove). In the actual sample, 51 of the 78 respondents had
“consistent” responses to the two questions — that is, people who both favor the sale of beer
and drink beer, or who are against the sale of beer and do not drink beer. We want to randomly
pair the responses to the two questions to compare against that observed result to test the
relationship.

Note 75: Notebook: Does opinion match behavior in a poll?

• Download notebook
• Interact

To accomplish this aim, we repeat the following procedure 10,000 times using a for loop. We
shuffle drink to random_drink so that the responses are randomly ordered. Now when we sub-
tract the corresponding elements of the two arrays, a 0 will appear in each element of the new
array diffs for which there was consistency in the response of the two questions. We therefore
count (sum) the times that diffs equals 0 and place this result in the array consistent and
the number of times diffs does not equal 0, and place this result in inconsistent. Find the
difference (consistent minus inconsistent), and record the result in the results array for
each trial.

results stores, for each trial, the number of consistent responses minus inconsistent responses.
To determine whether the results of the actual sample indicate a relationship between the
responses to the two questions, we check how often the random trials had a difference (between
consistent and inconsistent responses) as great as 24, the value in the observed sample.
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import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

# Constitute the set of 52 beer drinkers, and the set of 26 non-drinkers,
# where 1 represents beer drinker, and 0 represents non-drinker.
drink = np.repeat([1, 0], [52, 26])
# Show the result
drink

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

# The same set of individuals classified by whether they favor or
# don't favor the sale of beer, where 1 represents those who favor
# local beer sale, and 0 represents those who do not.
sale = np.repeat([1, 0], [65, 13])
# Show the result
sale

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

# Number of repeats.
n_trials = 10_000

# Array to store the results of each trial.
results = np.zeros(n_trials)

# Repeat the experiment 10,000 times.
for i in range(n_trials):

# Shuffle the drink labels..
random_drink = rnd.permuted(drink)
# Note — random_drink is now an array like this:
# [1, 0, 1, 1, 1, 0, 0, 1 ...]
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# Subtract the favor/don't favor set from the drink/don't drink set.
# Consistent responses are someone who drinks favoring the sale of beer (a
# 1 and a 1) or someone who doesn't drink opposing the sale of beer.
# When subtracted, consistent responses *(and only consistent responses)*
# produce a 0.
diffs = random_drink - sale
# Count the number of consistent responses (those equal to 0).
consistent = np.sum(diffs == 0)
# Count the "inconsistent" responses (those not equal to 0).
inconsistent = np.sum(diffs != 0)
# Find the difference.
diff_diff = consistent - inconsistent
# Keep track of the results of each trial.
results[i] = diff_diff
# End one trial, go back and repeat until all 10,000 trials are complete.

# Produce a histogram of the trial result.
plt.hist(results, bins=np.arange(0, 40))
plt.title('Consistent-inconsistent responses in null world')
plt.xlabel('Consistent-inconsistent responses')

# Count differences >= observed.
k = np.sum(results >= 24)
# Proportion.
kk = k / n_trials
# Print result.
print('Proportion null-world differences >= observed:', kk)

Proportion null-world differences >= observed: 0.2251
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End of notebook: Does opinion match behavior in a poll?

consistent_drink starts at Note 75.

The actual results showed a difference of 24. In the histogram we see that a difference that
large or larger happened just by chance pairing — without any relationship between the two
variables — about 23 percent of the time. Hence, we conclude that there is little evidence of
a relationship between the two variables.

Though the test just described may generally be appropriate for data of this sort, it may well
not be appropriate in some particular case. Let’s consider a set of data where even if the test
showed that an association existed, we would not believe the test result to be meaningful.

Suppose the survey results had been as presented in Table 29.13. We see that non-beer drinkers
have a higher rate of approval of allowing beer drinking, which does not accord with experience
or reason. Hence, without additional explanation we would not believe that a meaningful
relationship exists among these variables even if the test showed one to exist. (Still another
reason to doubt that a relationship exists is that the absolute differences are too small to
mean anything to anyone — there is only a 6% difference in disapproval between drink and
don’t drink groups. On both grounds, then, it makes sense simply to act as if there were no
difference between the two groups and to run no test.)

Table 29.13: Beer poll in which results are not in accord with expectation

% Approve % Disapprove Total
Beer Drinkers 71% 29% 100%
Non-Beer Drinkers 77% 23% 100%
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The lesson to be learned from this is that one should inspect the data carefully before applying a
statistical test, and only test for “significance” if the apparent relationships accord with theory,
general understanding, and common sense.

29.6.2 Example: do athletes really have “slumps”?

Are successive events in a series independent, or is there a relationship between
them?

The important concept of independent events was introduced earlier. Various scientific and
statistical decisions depend upon whether or not a series of events is independent. But how does
one know whether or not the events are independent? Let us consider a baseball example.

Baseball players and their coaches believe that on some days and during some weeks a player
will bat better than on other days and during other weeks. And team managers and coaches
act on the belief that there are periods in which players do poorly — slumps — by temporarily
replacing the player with another after a period of poor performance. The underlying belief is
that a series of failures indicates a temporary (or permanent) change in the player’s capacity
to play well, and it therefore makes sense to replace him until the evil spirit passes on, either
of its own accord or by some change in the player’s style.

But even if his hits come randomly, a player will have runs of good luck and runs of bad luck
just by chance — just as does a card player. The problem, then, is to determine whether (a)
the runs of good and bad batting are merely runs of chance, and the probability of success
for each event remains the same throughout the series of events — which would imply that
the batter’s ability is the same at all times, and coaches should not take recent performance
heavily into account when deciding which players should play; or (b) whether a batter really
does have a tendency to do better at some times than at others, which would imply that there
is some relationship between the occurrence of success in one trial event and the probability
of success in the next trial event, and therefore that it is reasonable to replace players from
time to time.

Let’s analyze the batting of a player we shall call “Slug.” Here are the results of Slug’s first
100 times at bat during the 1987 season (“H” = hit, “X” = out):

X X X X X X H X X H X H H X X X X X X X X H X X X X X H X X X X H H X X X X
X H X X H X H X X X H H X X X X X H X H X X X X H H X H H X X X X X X X X X
X H X X X H X X H X X H X H X X H X X X H X X X.

Now, do Slug’s hits tend to come in bunches? That would be the case if he really did have a
tendency to do better at some times than at others. Therefore, let us compare Slug’s results
with those of a deck of cards or a set of random numbers that we know has no tendency to do
better at some times than at others.
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During this period of 100 times at bat, Slug has averaged one hit in every four times at bat
— a .250 batting average. This average is the same as the chance of one card suit’s coming
up. We designate hearts as “hits” and prepare a deck of 100 cards, twenty-five “H”s (hearts,
or “hit”) and seventy-five “X”s (other suit, or “out”). Here is the sequence in which the 100
randomly-shuffled cards fell:

X X H X X X X H H X X X H H H X X X X X H X X X H X X H X X X X H X H H X X
X X X X X X X H X X X X X X H H X X X X X H H H X X X X X X H X H X H X X H
X H X X X X X X X X X H X X X X X X X H H H X X.

Now we can compare whether or not Slug’s hits are bunched up more than they would be
by random chance; we can do so by counting the clusters (also called “runs”) of one or more
consecutive hits or outs for Slug and for the cards. Notice a cluster (run) can be length 1. So
“H H X X X H X H” contains five clusters — they are “H H”, “X X X”, “H” “X” “H”. Notice
too that number of clusters will be highest when there is no clumping — that is - when “H”
and “X” always alternate, as in “H X H X H X …”. Slug had forty-three clusters, which is more
than the thirty-seven clusters in the cards; it therefore does not seem that there is a tendency
for Slug’s hits to clump together. (A larger number of clusters indicates a lower tendency to
cluster.)

Of course, the single trial of 100 cards shown above might have an unusually high or low
number of clusters. To be safer, lay out, (say,) ten trials of 100 cards each, and compare Slug’s
number of clusters with the various trials. The proportion of trials with more clusters than
Slug’s indicates whether or not Slug’s hits have a tendency to bunch up. (But caution: This
proportion cannot be interpreted directly as a probability.) Now the steps:

• Step 1. Constitute a bucket with 3 slips of paper that say “out” and one that says
“hit.” Or use a table of random numbers and say “01-25” = hits (H), “26-00” = outs (X),
Slug’s long-run average.

• Step 2. Sample 100 slips of paper, with replacement, record “hit” or “out” each time,
or write a series of “H’s” or “X’s” corresponding to 100 numbers, each selected randomly
between 1 and 100.

• Step 3. Count the number of “clusters,” that is, the number of “runs” of the same event,
“H”s or “X”s.

• Step 4. Compare the outcome in step 3 with Slug’s outcome, 43 clusters. If 43 or fewer;
write “yes,” otherwise “no.”

• Step 5. Repeat steps 2-4 a hundred times.
• Step 6. Compute the proportion “yes.” This estimates the probability that Slug’s

record is not characterized by more “slumps” than would be caused by chance. A very
low proportion of “yeses” indicates longer (and hence fewer) “streaks” and “slumps” than
would result by chance.

In Python, we can do this experiment 10000 times.
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Note 76: Notebook: Do Slugs hits and misses tend to cluster?

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

# Set up the random number generator.
rnd = np.random.default_rng()

First let us work out how to calculate the number of clusters as defined above.

This is Slug’s record:

slug = np.array([
'X', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'X', 'H', 'X', 'H', 'H', 'X', 'X',
'X', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'X',
'X', 'X', 'H', 'H', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'X', 'H', 'X', 'H',
'X', 'X', 'X', 'H', 'H', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'H', 'X', 'X',
'X', 'X', 'H', 'H', 'X', 'H', 'H', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X',
'X', 'X', 'H', 'X', 'X', 'X', 'H', 'X', 'X', 'H', 'X', 'X', 'H', 'X', 'H',
'X', 'X', 'H', 'X', 'X', 'X', 'H', 'X', 'X', 'X'

])

Here’s how we can calculate the number of runs:

slug_runs = 0
current_element = 'start-marker' # Something that is always != to the elements.
for element in slug:

if element != current_element: # The previous cluster has finished.
slug_runs = slug_runs + 1 # Record we are in a new cluster.
current_element = element # Give the starting element for the new cluster.

# Show the count.
slug_runs

43

For practice, let us count the number of clusters in the random set of cards above:
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random_hand = np.array([
'X', 'X', 'H', 'X', 'X', 'X', 'X', 'H', 'H', 'X', 'X', 'X', 'H', 'H', 'H',
'X', 'X', 'X', 'X', 'X', 'H', 'X', 'X', 'X', 'H', 'X', 'X', 'H', 'X', 'X',
'X', 'X', 'H', 'X', 'H', 'H', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X',
'H', 'X', 'X', 'X', 'X', 'X', 'X', 'H', 'H', 'X', 'X', 'X', 'X', 'X', 'H',
'H', 'H', 'X', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'H', 'X', 'H', 'X', 'X',
'H', 'X', 'H', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'H', 'X', 'X',
'X', 'X', 'X', 'X', 'X', 'H', 'H', 'H', 'X', 'X'

])
random_runs = 0
current_element = 'start-marker' # Something that is always != to the elements.
for element in random_hand:

if element != current_element: # The previous cluster has finished.
random_runs = random_runs + 1 # Record we are in a new cluster.
current_element = element # Give the starting element for the new cluster.

# Show the result.
random_runs

37

We will use that code in the procedure below.

# Set the number of trials.
n_trials = 10_000

# An empty array to store the trials.
results = np.zeros(n_trials)

for i in range(n_trials):
# Sample 100 "at-bats" with Slug's own probabilities.
hits_misses = rnd.choice(['H', 'X'], p=[0.25, 0.75], size=100)
# How many runs (of any length >=1) are there in the 100 at-bats?
fake_runs = 0
current_element = 'start-marker' # Something always != to the elements.
for element in hits_misses:

if element != current_element: # The previous cluster has finished.
fake_runs = fake_runs + 1 # Record we are in a new cluster.
current_element = element # Give the starting element for the new cluster.

# Record the result.
results[i] = fake_runs
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plt.hist(results, bins=25)
plt.title('Distribution of number of clusters in random hit/miss arrays')
plt.title('Number of clusters')
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Examining the histogram, we see that 43 runs is not at all an unusual occurrence.

End of notebook: Do Slugs hits and misses tend to cluster?

slugs_slumps starts at Note 76.

The manager wants to look at this matter in a somewhat different fashion, however. He insists
that the existence of slumps is proven by the fact that the player sometimes does not get a hit
for an abnormally long period of time. One way of testing whether or not the coach is right
is by comparing an average player’s longest slump in a 100-at-bat season with the longest run
of outs in the first card trial. Assume that Slug is a player picked at random. Then compare
Slug’s longest slump — say, 10 outs in a row — with the longest cluster of a single simulated
100-at-bat trial with the cards, 9 outs. This result suggests that Slug’s apparent slump might
well have resulted by chance.

The estimate can be made more accurate by taking the average longest slump (cluster of outs)
in ten simulated 400-at-bat trials. But notice that we do not compare Slug’s slump against
the longest slump found in ten such simulated trials. We want to know the longest cluster of
outs that would be found under average conditions, and the hand with the longest slump is
not average or typical. Determining whether to compare Slug’s slump with the average longest
slump or with the longest of the ten longest slumps is a decision of crucial importance. There
are no mathematical or logical rules to help you. What is required is hard, clear thinking.
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Experience can help you think clearly, of course, but these decisions are not easy or obvious
even to the most experienced statisticians.

The coach may then refer to the protracted slump of one of the twenty-five players on his
team to prove that slumps really occur. But, of twenty-five random 100-at-bat trials, one will
contain a slump longer than any of the other twenty-four, and that slump will be considerably
longer than average. A fair comparison, then, would be between the longest slump of his
longest-slumping player, and the longest run of outs found among twenty-five random trials.
In fact, the longest run among twenty-five hands of 100 cards was fifteen outs in a row. And,
if we had set some of the hands for lower (and higher) batting averages than .250, the longest
slump in the cards would have been even longer.

Research by Roberts and his students at the University of Chicago shows that in fact slumps
do not exist, as I conjectured in the first publication of this material in 1969. (Of course, a
batter feels as if he has a better chance of getting a hit at some times than at other times.
After a series of successful at-bats, sandlot players and professionals alike feel confident — just
as gamblers often feel that they’re on a “streak.” But there seems to be no connection between
a player’s performance and whether he feels hot or cold, astonishing as that may be.)

Averages over longer periods may vary systematically, as Ty Cobb’s annual batting average
varied non-randomly from season to season, Roberts found. But short-run analyses of dayto-
day and week-to-week individual and team performances in most sports have shown results
similar to the outcomes that a lottery-type random-number machine would produce.

Remember, too, the study by Gilovich, Vallone, and Twersky of basketball mentioned in
Chapter 14. To repeat, their analyses “provided no evidence for a positive correlation between
the outcomes of successive shots.” That is, knowing whether a shooter has or has not scored on
the previous sheet — or in any previous sequence of shots — is useless for predicting whether
they will score again.

The species homo sapiens apparently has a powerful propensity to believe that one can find a
pattern even when there is no pattern to be found. Two decades ago I (JLS) cooked up several
series of random numbers that looked like weekly prices of publicly-traded stocks. Players in
the experiment were told to buy and sell stocks as they chose. Then I repeatedly gave them
“another week’s prices,” and allowed them to buy and sell again. The players did all kinds of
fancy calculating, using a wild variety of assumptions — although there was no possible way
that the figuring could help them.

When I stopped the game before completing the 10 buy-and-sell sessions they expected, sub-
jects would ask that the game go on. Then I would tell them that there was no basis to believe
that there were patterns in the data, because the “prices” were just randomly-generated num-
bers. Winning or losing therefore did not depend upon the subjects’ skill. Nevertheless, they
demanded that the game not stop until the 10 “weeks” had been played, so they could find
out whether they “won” or “lost.”
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This study of batting illustrates how one can test for independence among various trials.
The trials are independent if each observation is randomly chosen with replacement from the
universe, in which case there is no reason to believe that one observation will be related to the
observations directly before and after; as it is said, “the coin has no memory.”

The year-to-year level of Lake Michigan is an example in which observations are not indepen-
dent. If Lake Michigan is very high in one year, it is likely to be higher than average the
following year because some of the high level carries over from one year into the next.4 We
could test this hypothesis by writing down whether the level in each year from, say, 1860 to
1975 was higher or lower than the median level for those years. We would then count the
number of runs of “higher” and “lower” and compare the number of runs of “black” and “red”
with a deck of that many cards; we would find fewer runs in the lake level than in an average
hand of 116 (1976-1860) cards, though this test is hardly necessary. (But are the changes in
Lake Michigan’s level independent from year to year? If the level went up last year, is there a
better than 50-50 chance that the level will also go up this year? The answer to this question is
not so obvious. One could compare the numbers of runs of ups and downs against an average
hand of cards, just as with the hits and outs in baseball.)

Exercise for students: How could one check whether the successive numbers in a random-
number table are independent?

29.7 Exercises

You can find solutions for problems at Appendix A.

29.7.1 Exercise: voter participation

Table 29.14 shows voter participation rates in the various states in the 1844 presidential election.
Should we conclude that there was a negative relationship between the participation rate and
the vote spread between the parties in the election? (Adapted from (Noreen 1989, 20, Table
2-4):

Table 29.14: Voter Participation In 1844 Presidential Election

State Participation Spread
Maine 67.5 13
New Hampshire 65.6 19
Vermont 65.7 18
Massachusetts 59.3 12
Rhode Island 39.8 20

4Example from (Wallis and Roberts 1956, 565 – 556).
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State Participation Spread
Connecticut 76.1 5
New York 73.6 1
New Jersey 81.6 1
Pennsylvania 75.5 2
Delaware 85.0 3
Maryland 80.3 5
Virginia 54.5 6
North Carolina 79.1 5
Georgia 94.0 4
Kentucky 80.3 8
Tennessee 89.6 1
Louisiana 44.7 3
Alabama 82.7 8
Mississippi 89.7 13
Ohio 83.6 2
Indiana 84.9 2
Illinois 76.3 12
Missouri 74.7 17
Arkansas 68.8 26
Michigan 79.3 6

The observed correlation coefficient between voter participation and spread is -0.425. Is this
more negative that what might occur by chance, if no correlation exists?

Here’s a notebook to get you started.

Note 77: Notebook: Voter participation in 1844 election

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

rnd = np.random.default_rng()

voter_df = pd.read_csv('data/election_1844.csv')
participation = np.array(voter_df['Participation'])
spread = np.array(voter_df['Spread'])
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End of notebook: Voter participation in 1844 election

voter_participation_exercise starts at Note 77.

See: Section A.6.

29.7.2 Exercise: association of runs and strikeouts

We would like to know whether, among major-league baseball players, home runs (per 500
at-bats) and strikeouts (per 500 at-bat’s) are correlated. For this exercise, you should use
the sum-of-products procedure as used above for I.Q. and athletic ability — multiplying the
elements within each pair. The next exercise uses the more “sophisticated” measure, the
correlation coefficient.

The data for 18 randomly-selected players in the 1989 season are as follows, as they would
appear in the first lines of the notebook.

Note 78: Notebook: Homeruns and strikeout sum of products.

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

homeruns = np.array([14, 20, 0, 38, 9, 38, 22, 31, 33,
11, 40, 5, 15, 32, 3, 29, 5, 32])

strikeout = np.array([135, 153, 120, 161, 138, 175, 126, 200, 205,
147, 165, 124, 169, 156, 36, 98, 82, 131])

# Exercise - complete this program.

End of notebook: Homeruns and strikeout sum of products.

homerun_sop_exercise starts at Note 78.

See: Section A.7.
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29.7.3 Exercise: runs, strikeouts, correlation coefficient

In the previous example relating strikeouts and home runs, we used the procedure of multiply-
ing the elements within each pair. Now we use a more “sophisticated” measure, the correlation
coefficient, which is simply a standardized form of the multiplicands, but sufficiently well known
that we calculate it with a pre-set command.

Exercise: Write a program that uses the correlation coefficient to test the significance of the
association between home runs and strikeouts. You can use the starting notebook for the
previous exercise.

See: Section A.8.

29.7.4 Exercise: money and exchange rate

All the other things equal, an increase in a country’s money supply is inflationary and should
have a negative impact on the exchange rate for the country’s currency. The data in the
following table (Table 29.15) were computed using data from tables in the 1983/1984 Statistical
Yearbook of the United Nations. The table shows the first 15 rows.

Table 29.15: % change in exchange rates and money supply 1983-1984

Exchange rate Money supply
Australia 0.089 0.035
Belgium 0.134 0.003
Botswana 0.351 0.085
Burma 0.064 0.155
Burundi 0.064 0.064
Canada 0.062 0.209
Chile 0.465 0.126
China 0.411 0.555
Costa Rica 0.100 0.100
Cyprus 0.158 0.044
Denmark 0.140 0.351
Ecuador 0.242 0.356
Fiji 0.093 0.000
Finland 0.124 0.164
France 0.149 0.090
Germany 0.156 0.061
Greece 0.302 0.202
Hungary 0.133 0.049
India 0.187 0.184
Indonesia 0.080 0.132
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Exchange rate Money supply
Italy 0.167 0.124
Jamaica 0.504 0.237
Japan 0.081 0.069
Jordan 0.092 0.010
Kenya 0.144 0.141
Korea 0.040 0.006
Kuwait 0.038 -0.180
Lebanon 0.619 0.065
Madagascar 0.337 0.244
Malawi 0.205 0.203
Malaysia 0.037 -0.006
Malta 0.003 0.003
Mauritania 0.180 0.192
Mauritius 0.226 0.136
Mexico 0.338 0.599
Morocco 0.076 0.076
Netherlands 0.158 0.078
New Zealand 0.370 0.098
Nigeria 0.079 0.082
Norway 0.177 0.242
Papua 0.075 0.209
Philippines 0.411 0.035
Portugal 0.288 0.166
Romania -0.029 0.039
Rwanda 0.059 0.083
Samoa 0.348 0.118
Saudi Arabia 0.023 0.023
Seychelles 0.063 0.031
Singapore 0.024 0.030
Solomon Is 0.101 0.526
Somalia 0.481 0.238
South Africa 0.624 0.412
Spain 0.107 0.086
Sri Lanka 0.051 0.141
Switzerland 0.186 0.186
Tunisia 0.193 0.068
Turkey 0.573 0.181
UK 0.255 0.154
USA 0.000 0.156
Vanatuva 0.008 0.331
Yemen 0.253 0.247
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Exchange rate Money supply
Yugoslavia 0.685 0.432
Zaire 0.343 0.244
Zambia 0.457 0.094
Zimbabwe 0.359 0.164

Are changes in the exchange rates and in money supplies related to each other? That is, are
they correlated?

Should the algorithm of non-computer resampling steps be similar to the algorithm for I.Q.
and athletic ability shown in the text? One can also work with the correlation coefficient
rather then the sum-of-products method, and expect to get the same result.

1. Write a series of non-computer resampling steps to solve this problem.
2. Write a Python program to implement those steps.

Here’s a notebook to get you started on part 2:

Note 79: Notebook: Exchange rates and money supply

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

rnd = np.random.default_rng()

exchange_df = pd.read_csv('data/exchange_rates.csv')
exchange_rates = np.array(exchange_df['exchange_rate'])
money_supply = np.array(exchange_df['money_supply'])

End of notebook: Exchange rates and money supply

exchange_rates_exercise starts at Note 79.

See: Section A.9.
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30 How Large a Sample?

30.1 Issues in determining sample size

Sometime in the course of almost every study — preferably early in the planning stage — the
researcher must decide how large a sample to take. Deciding the size of sample to take is
likely to puzzle and distress you at the beginning of your research career. You have to decide
somehow, but there are no simple, obvious guides for the decision.

For example, one of the first studies I worked on was a study of library economics (Fussler
and Simon 1961), which required taking a sample of the books from the library’s collections.
Sampling was expensive, and we wanted to take a correctly sized sample. But how large should
the sample be? The longer we searched the literature, and the more people we asked, the more
frustrated we got because there just did not seem to be a clear-cut answer. Eventually we
found out that, even though there are some fairly rational ways of fixing the sample size, most
sample sizes in most studies are fixed simply (and irrationally) by the amount of money that
is available or by the sample size that similar research has used in the past.

The rational way to choose a sample size is by weighing the benefits you can expect in in-
formation against the cost of increasing the sample size. In principle you should continue to
increase the sample size until the benefit and cost of an additional sampled unit are equal.1

The benefit of additional information is not easy to estimate even in applied research, and it
is extraordinarily difficult to estimate in basic research. Therefore, it has been the practice
of researchers to set up target goals of the degree of accuracy they wish to achieve, or to
consider various degrees of accuracy that might be achieved with various sample sizes, and
then to balance the degree of accuracy with the cost of achieving that accuracy. The bulk
of this chapter is devoted to learning how the sample size is related to accuracy in simple
situations.

In complex situations, however, and even in simple situations for beginners, you are likely to
feel frustrated by the difficulties of relating accuracy to sample size, in which case you cry out
to a supervisor, “Don’t give me complicated methods, just give me a rough number based on
your greatest experience.” My inclination is to reply to you, “Sometimes life is hard and there
is no shortcut.” On the other hand, perhaps you can get more information than misinformation
out of knowing sample sizes that have been used in other studies. Table 30.1 shows the middle

1Schlaifer (1961) attacks the sample-size problem in the wider context of decision making, costs, and benefits.
The statistically knowledgeable reader can find an excellent discussion of sample size in Hansen et al. (1953).
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(modal), 25th percentile, and 75th percentile scores for — please keep this in mind — National
Opinion Surveys Table 30.2 shows how subgroup analyses affect sample size. The source for
both tables is Applied Sampling, by Seymour Sudman (1976, 86–87) copyright Academic Press,
reprinted by permission.

Pretest sample sizes are smaller, of course, perhaps 25-100 observations. Samples in research
for Master’s and Ph.D. theses are likely to be closer to a pretest than to national samples.

Table 30.1: Common sample sizes for national and regional studies by subject

Subject Matter National Regional
Mode Q3 Q1 Mode Q3 Q1

Financial 1000+ — — 100 400 50
Medical 1000+ 1000+ 500 1000+ 1000+ 250
Other Behavior 1000+ — — 700 1000 300
Attitudes 1000+ 1000+ 500 700 1000 400
Laboratory
Experiments

— — — 100 200 50

Table 30.2: Typical sample sizes for studies of human and institutional populations

Subgroup analysis People or households Institutions
National Special National Special

None or few 1000-1500 200-500 200-500 50-200
Average 1500-2500 500-1000 500-1000 200-500
Many 2500+ 1000+ 1000+ 500+

Once again, the sample size ought to depend on the proportions of the sample that have the
characteristics you are interested in, the extent to which you want to learn about subgroups
as well as the universe as a whole, and of course the purpose of your study, the value of the
information, and the cost. Also, keep in mind that the added information that you obtain
from an additional sample observation tends to be smaller as the sample size gets larger. You
must quadruple the sample to halve the error.

Now let us consider some specific cases. The first examples taken up here are from the
descriptive type of study, and the latter deal with sample sizes in relationship research.
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30.2 Some practical examples

30.2.1 Example: what proportion of homes are listening to a radio station?

What proportion of the homes in Countryville watch television station WCNT’s ten o’clock
news program? That is the question your phone survey aims to answer, and you want to know
how many randomly selected homes you must phone to obtain a sufficiently large sample.

Begin by guessing the likeliest answer, say 30 percent in this case. Do not worry if you are off
by 5 per cent or even 10 per cent; and you will probably not be further off than that. Select
a first-approximation sample size of perhaps 400; this number is selected from my general
experience, but it is just a starting point. Then proceed through the first 400 numbers in a
random-number table, marking down a yes for numbers 1-3 and no for numbers 4-10 (because
3/10 was your estimate of the proportion listening). Then add the number of yes and no.
Carry out perhaps ten sets of such trials, the results of which are in Table 30.3.

Table 30.3: Ten example trials from phone survey simulation

Trial number Number “yes” Number “no”

% difference from
expected mean of 30%
(120 “yes”)

1 115 285 1.25
2 119 281 0.25
3 116 284 1.00
4 114 286 1.50
5 107 293 3.25
6 116 284 1.00
7 132 268 3.00
8 123 277 0.75
9 121 279 0.25
10 114 286 1.50
Mean 1.375

Based on these ten trials, you can estimate that if you take a sample of 400 and if the “real”
viewing level is 30 percent, your average percentage error will be 1.375 percent on either side
of 30 percent. That is, with a sample of 400, half the time your error will be greater than
1.375 percent if 3/10 of the universe is listening.

Now you must decide whether the estimated error is small enough for your needs. If you
want greater accuracy than a sample of 400 will give you, increase the sample size, using this
important rule of thumb: To cut the error in half, you must quadruple the sample size. In
other words, if you want a sample that will give you an error of only 0.6875 percent on the
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average, you must increase the sample size to 1,600 interviews. Similarly, if you cut the sample
size to 100, the average error will be only 2.75 percent (double 1.375 percent) on either side
of 30 percent. If you distrust this rule of thumb, run ten or so trials on sample sizes of 100 or
1,600, and see what error you can expect to obtain on the average.

If the “real” viewership is 20 percent or 40 percent, instead of 30 percent, the accuracy you
will obtain from a sample size of 400 will not be very different from an “actual” viewership
of 30 percent, so do not worry about that too much, as long as you are in the right general
vicinity.

Accuracy is slightly greater in smaller universes but only slightly. For example, a sample of
400 would give perfect accuracy if Countryville had only 400 residents. And a sample of 400
will give slightly greater accuracy for a town of 800 residents than for a city of 80,000 residents.
But, beyond the point at which the sample is a large fraction of the total universe, there is no
difference in accuracy with increases in the size of universe. This point is very important. For
any given level of accuracy, identical sample sizes give the same level of accuracy for Podunk
(population 8,000) or New York City (population 8 million). The ratio of the sample size to
the population of Podunk or New York City means nothing at all, even though it intuitively
seems to be important.

The size of the sample must depend upon which population or sub-populations you wish
to describe. For example, Alfred Kinsey’s sample size for the classic “Sexual Behavior in
the Human Male” (1948) would have seemed large, by customary practice, for generalizations
about the United States population as a whole. But, as Kinsey explains: “… the chief concern of
the present study is an understanding of the sexual behavior of each segment of the population,
and that it is only secondarily concerned with generalization for the population as a whole.”
(1948, 82, italics added). Therefore Kinsey’s sample had to include sub-samples large enough
to obtain the desired accuracy in each of these sub-universes. The U.S. Census offers a similar
illustration. When the U.S. Bureau of the Census aims to estimate only a total or an average for
the United States as a whole — as, for example, in the Current Population Survey estimate of
unemployment — a sample of perhaps 50,000 is big enough. But the decennial census aims to
make estimates for all the various communities in the country, estimates that require adequate
sub-samples in each of these sub-universes; such is the justification for the decennial census’
sample size of so many millions. Television ratings illustrate both types of purpose. Nielsen
ratings, for example, are sold primarily to national network advertisers. These advertisers on
national television networks usually sell their goods all across the country and are therefore
interested primarily in the total United States viewership for a program, rather than in the
viewership in various demographic subgroups. The appropriate calculations for Nielsen sample
size will therefore refer to the total United States sample. But other organizations sell rating
services to local television and radio stations for use in soliciting advertising over the local
stations rather than over the network as a whole. Each local sample must then be large
enough to provide reasonable accuracy, and, considered as a whole, the samples for the local
stations therefore add up to a much larger sample than the Nielsen and other nationwide
samples.
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The problem may be handled with the following Python program. This program repre-
sents viewers with the string 'viewers' and non-viewers as 'not viewers'. It then asks
rnd.choice to choose randomly between 'viewer' and 'not viewer' with a 30% (p=0.3)
chance of getting a 'viewer' and a 70% chance of getting a 'not viewer'. It gets a sample
of 400 such numbers, counts (with np.sum the “viewers” then finds how much this sample
diverges from the expected number of viewers (30% of 400 = 120). It repeats this procedure
10000 times, and then calculates the average divergence.

Note 80: Notebook: Number of viewers

• Download notebook
• Interact

import numpy as np

# set up the random number generator
rnd = np.random.default_rng()

# set the number of trials
n_trials = 10000

# an empty array to store the results
results = np.zeros(n_trials)

# What are the options to choose from?
options = ['viewer', 'not viewer']

# do n_trials trials
for i in range(n_trials):

# Choose 'viewer' 30% of the time.
a = rnd.choice(options, size=400, p=[0.3, 0.7])

# count the viewers
b = np.sum(a == 'viewer')

# how different from expected?
c = 120 - b

# absolute value of the difference
d = np.abs(c)
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# express as a proportion of sample
e = d / 400

# keep score of the result
results[i] = e

# find the mean divergence
k = np.mean(results)

# Show the result
k

np.float64(0.018184000000000002)

End of notebook: Number of viewers

viewer_numbers starts at Note 80.

It is a simple matter to go back and try a sample size of (say) 1600 rather than 400, and
examine the effect on the mean difference.

30.2.2 Example: average weight gain for pig rations

This example, like Section 30.2.1, illustrates the choice of sample size for estimating a summa-
rization statistic. Later examples deal with sample sizes for probability statistics.

Hark back to the pig-ration problems presented earlier (e.g. Section 24.0.1), and consider the
following set of pig weight-gains recorded for ration A: 31, 34, 29, 26, 32, 35, 38, 34, 31, 29,
32, 30. Assume that our purpose now is to estimate the average weight gain for ration A, so
that the feed company can advertise to farmers how much weight gain to expect from ration
A. If the universe is made up of pig weight-gains like those we observed, we can simulate the
universe with, say, 1 million weight gains of thirty-one pounds, 1 million of thirty-four pounds,
and so on for the twelve observed weight gains. Or, more conveniently, as accuracy will not be
affected much, we can make up a universe of say, thirty cards for each thirty-one-pound gain,
thirty cards for each thirty-four-pound gains and so forth, yielding a deck of 30 x 12 = 360
cards. Then shuffle, and, just for a starting point, try sample sizes of twelve pigs. The means
of the samples for twenty such trials are as in Table 30.4.
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Table 30.4: Simulated average weight gains from pig ration A

Trial Mean

Absolute
deviation of
trial mean
from actual
mean Trial Mean

Absolute
deviation of
trial mean
from actual
mean

1 31.77 .02 11 32.10 .35
2 32.27 1.52 12 30.67 1.08
3 31.75 .00 13 32.42 .67
4 30.83 .92 14 30.67 1.08
5 30.52 1.23 15 32.25 .50
6 31.60 .15 16 31.60 .15
7 32.46 .71 17 32.33 .58
8 31.10 .65 18 33.08 1.33
9 32.42 .35 19 33.01 1.26
10 30.60 1.15 20 30.60 1.15
Mean 31.75

Now ask yourself whether a sample size of twelve pigs gives you enough accuracy. If we sort
the absolute deviations, we find the middle two values (the 10th and 11th values) of 20 are
0.67 and 0.71, so the median is the average of these values: 0.69. There is a .5 chance that the
mean for any given sample will be more than 0.69 points from the mean of the universe that
generates such samples, which in this situation is 31.75 pounds. Is this close enough? That is
up to you to decide in light of the purposes for which you are running the experiment. (The
logic of the inference you make here is inevitably murky, and use of the term “real mean” can
make it even murkier, as is seen in the discussion in Chapter 26 — Chapter 28 on confidence
intervals.)

To see how accuracy is affected by larger samples, try a sample size of forty-eight “pigs” dealt
from the same deck. (But, if the sample size were to be much larger than forty-eight, you might
need a “universe” greater than 360 cards.) The results of twenty trials are in Table 30.5.

Table 30.5: Simulated average weight gain from 48 pigs

Trial Mean

Absolute
deviation of
trial mean
from actual
mean Trial Mean

Absolute
deviation of
trial mean
from actual
mean

1 31.80 .05 11 31.93 .18
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Trial Mean

Absolute
deviation of
trial mean
from actual
mean Trial Mean

Absolute
deviation of
trial mean
from actual
mean

2 32.27 .52 12 32.40 .65
3 31.82 .07 13 31.32 .43
4 31.39 .36 14 32.07 .68
5 31.22 .53 15 32.03 .28
6 31.88 .13 16 31.95 .20
7 31.37 .38 17 31.75 .00
8 31.48 .27 18 31.11 .64
9 31.20 .55 19 31.96 .21
10 32.01 .26 20 31.32 .43
Mean 31.75

The median of mean absolute deviations in Table 30.5 is 0.32. In half the trials with a sample
size of forty-eight the difference between the sample mean and the “real” mean of 31.75 will be
.32 pound, smaller than with the 0.69 of samples of 12 pigs. Again, is this too little accuracy
for you? If so, increase the sample size further.

The attentive reader of this example may have been troubled by this question: How do you
know what kind of a distribution of values is contained in the universe before the sample is
taken? The answer is that you guess, just as in Section 30.2.1 you guessed at the mean of
the universe. If you guess wrong, you will get either more accuracy or less accuracy than you
expected from a given sample size, but the results will not be fatal; if you obtain more accuracy
than you wanted, you have wasted some money, and, if you obtain less accuracy, your sample
dispersion will tell you so, and you can then augment the sample to boost the accuracy. But
an error in guessing will not introduce error into your final results.

The guess should be based on something, however. One source for guessing is your general
knowledge of the likely dispersion; for example, if you were estimating male heights in Rhode
Island, you would be able to guess what proportion of observations would fall within 2 inches,
4 inches, 6 inches, and 8 inches, perhaps, of the real value. Or, much better yet, a very small
pretest will yield quite satisfactory estimates of the dispersion.

Here is a Python program that will let you try different sample sizes, and then take bootstrap
samples to determine the range of sampling error. You set the sample size by setting the
sampsize variable. Above I noted that we could sample without replacement from a “deck”
of thirty “31” ’s, thirty “34” ’s, etc, as a substitute for creating a universe of a million “31” ’s,
a million “34” ’s, etc. We can achieve the same effect if we replace each card after we sample
it; this is equivalent to creating a “deck” of an infinite number of “31” ’s, “34” ’s, etc. That is
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what the rnd.choice command does, below. Note that the sample size is determined by the
value of the sampsize variable, which you set at the beginning. From here on the program
takes the mean of each sample, keeps score of that result in the results array and produces
a histogram. The quantile function will also tell you what values enclose 90% of all sample
results, excluding those below the 5th percentile and above the 95th percentile.

Here is a notebook for a sample size of 12.

Note 81: Notebook: Sampling error for pig ration weight gain via bootstrap

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

sampsize = 12

gains = np.array([31, 34, 29, 26, 32, 35, 38, 34, 32, 31, 30, 29])

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
fake_gains = rnd.choice(gains, size=sampsize)
results[i] = np.mean(fake_gains)

plt.hist(results, bins=25)
plt.title('Distribution of mean of ' + str(sampsize) +

' weights from ' + str(n_trials) + ' bootstrap samples')
plt.xlabel('Mean weight')

# Find values such that to 5%, 95% of values are below given value.
# (These are the 5% and 95% percentile values).
hi_lo_range = np.quantile(results, [0.05, 0.95])

print('5% and 95% percentiles of bootstrap means:', np.round(hi_lo_range, 2))

5% and 95% percentiles of bootstrap means: [30.25 33.25]
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End of notebook: Sampling error for pig ration weight gain via bootstrap

sampling_error_bootstrap starts at Note 81.

30.3 Example: sample size for inference on fruit fly sex difference

This is the first example of sample-size estimation for probability (testing) statistics, rather
than the summarization statistics dealt with above.

Recall the problem of the sex of fruit-fly offspring discussed in Section 21.2.1. The question
now is, how large a sample is needed to determine whether the radiation treatment results in
a sex ratio other than a 50-50 male-female split?

The first step is, as usual, difficult but necessary. As the researcher, you must guess what the
sex ratio will be if the treatment does have an effect. Let’s say that you use all your general
knowledge of genetics and of this treatment and that you guess the sex ratio will be 75 percent
males and 25 percent females if the treatment alters the ratio from 50-50.

In table of random numbers from 00-99 let “01-25” stand for females and “26-00” for males.
Take twenty successive pairs of numbers for each trial, and run perhaps fifty trials, as in
Table 30.6.

Table 30.6: Simulated numbers of males and females for 75/25% universe

Trial Females Males Trial Females Males Trial Females Males
1 4 16 18 7 13 34 4 16
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Trial Females Males Trial Females Males Trial Females Males
2 6 14 19 3 17 35 6 14
3 6 14 20 7 13 36 3 17
4 5 15 21 4 16 37 8 12
5 5 15 22 4 16 38 4 16
6 3 17 23 5 15 39 3 17
7 7 13 24 8 12 40 6 14
8 6 14 25 4 16 41 5 15
9 3 17 26 1 19 42 2 18
10 2 18 27 5 15 43 8 12
11 6 14 28 3 17 44 4 16
12 1 19 29 8 12 45 6 14
13 6 14 30 8 12 46 5 15
14 3 17 31 5 15 47 3 17
15 1 19 32 3 17 48 5 15
16 5 15 33 4 16 49 3 17
17 5 15 50 5 15

In Section 21.2.1 with a sample of twenty flies that contained fourteen or more males, we
found only an 8% probability that such an extreme sample would result from a 50-50 universe.
Therefore, if we observe such an extreme sample, we rule out a 50-50 universe.

Now Table 30.6 tells us that, if the ratio is really 75 to 25, then a sample of twenty will show
fourteen or more males forty-two of fifty times (84 percent of the time). If we take a sample
of twenty flies and if the ratio is really 75-25, we will make the correct decision by deciding
that the split is not 50-50, 84 percent of the time.

Perhaps you are not satisfied with reaching the right conclusion only 84 percent of the time.
In that case, still assuming that the ratio will really be 75-25 if it is not 50-50, you need to
take a sample larger than twenty flies. How much larger? That depends on how much surer
you want to be. Follow the same procedure for a sample size of perhaps eighty flies. First work
out for a sample of eighty, as was done in Section 21.2.1 for a sample of twenty, the number of
males out of eighty that you would need to find for the odds to be, say, 9 to 1 that the universe
is not 50-50; your estimate turns out to be forty-eight males. Then run fifty trials of eighty
flies each on the basis of 75-25 probability, and see how often you would not get as many as
forty-eight males in the sample. Table 30.7 shows the results we got. No trial was anywhere
near as low as forty-eight, which suggests that a sample of eighty is larger than necessary if
the split is really 75-25.
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Table 30.7: Simulated males / females from 80 flies for 75/25% universe

Trial Females Males Trial Females Males Trial Females Males
1 21 59 18 13 67 34 21 59
2 22 58 19 19 61 35 17 63
3 13 67 20 17 63 36 22 58
4 15 65 21 17 63 37 19 61
5 22 58 22 18 62 38 21 59
6 21 59 23 26 54 39 21 59
7 13 67 24 20 60 40 21 59
8 24 56 25 16 64 41 21 59
9 16 64 26 22 58 42 18 62
10 21 59 27 16 64 43 19 61
11 20 60 28 21 59 44 17 63
12 19 61 29 22 58 45 13 67
13 21 59 30 21 59 46 16 64
14 17 63 31 22 58 47 21 59
15 22 68 32 19 61 48 16 64
16 22 68 33 10 70 49 17 63
17 17 63 50 21 59

It is obvious that, if the split you guess at is 60 to 40 rather than 75 to 25, you will need a
bigger sample to obtain the “correct” result with the same probability. For example, run some
eighty-fly random-number trials with 1-40 representing males and 51-100 representing females.
Table 30.8 shows that only twenty-four of fifty (48 percent) of the trials reach the necessary
cut-off at which one would judge that a sample of eighty really does not come from a universe
that is split 50-50; therefore, a sample of eighty is not big enough if the split is 60-40.

Table 30.8: Simulated males / females from 80 flies for 60/40% universe

Trial Females Males Trial Females Males Trial Females Males
1 35 45 18 32 48 34 35 45
2 36 44 19 28 52 35 36 44
3 35 45 20 32 48 36 29 51
4 35 45 21 33 47 37 36 44
5 36 44 22 37 43 38 36 44
6 36 44 23 36 44 39 31 49
7 36 44 24 31 49 40 29 51
8 34 46 25 27 53 41 30 50
9 34 46 26 30 50 42 35 45
10 29 51 27 31 49 43 32 48
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Trial Females Males Trial Females Males Trial Females Males
11 29 51 28 33 47 44 30 50
12 32 48 29 37 43 45 37 43
13 29 51 30 30 50 46 31 49
14 31 49 31 31 49 47 36 44
15 28 52 32 32 48 48 34 64
16 33 47 33 34 46 49 29 51
17 36 44 50 37 43

To review the main principles of this example: First, the closer together the two possible
universes from which you think the sample might have come (50-50 and 60-40 are closer
together than are 50-50 and 75-25), the larger the sample needed to distinguish between them.
Second, the surer you want to be that you reach the right decision based upon the sample
evidence, the larger the sample you need.

The problem may be handled with the following Python notebook. We construct a benchmark
universe that is 60-40 male-female, and take samples of size 80, observing whether the numbers
of males and females differs enough in these resamples to rule out a 50-50 universe. Recall
that we need at least 48 of 80 males to say that the proportion of males is not 50%.

Note 82: Notebook: Sample size for detecting fruitfly sex difference

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

n_trials = 10_000

# Results for each trial.
results = np.zeros(n_trials)

# Do 10,000 trials
for i in range(n_trials):

# Generate 80 "flies" with 0.6 chance of male, 0.4 of female>
flies = rnd.choice(['male', 'female'], size=80, p=[0.6, 0.4])
# Count the males.
n_males = np.sum(flies == 'male')
# Keep score.
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results[i] = n_males

# How many of the trials produced more than 48 males?
k = np.sum(results >= 48)
# Convert to a proportion
kk = k / n_trials

print('Proportion of 60/40 trials giving >= 48 males:', kk)

Proportion of 60/40 trials giving >= 48 males: 0.5534

If the result kk is close to 1, we then know that samples of size 80 will almost always produce
samples with enough males to avoid misleading us into thinking that they could have come
from a universe in which males and females are split 50-50.

End of notebook: Sample size for detecting fruitfly sex difference

flies_sample_size starts at Note 82.

30.3.1 Example: sample size for an internet-provider poll

Referring back to Section 21.2.3, on the internet provider poll, how large a sample should you
have taken? Pretend that the data have not yet been collected. You need some estimate of
how the results will turn out before you can select a sample size. But you have not the foggiest
idea how the results will turn out. Therefore, go out and take a very small sample, maybe ten
people, to give you some idea of whether people will split quite evenly or unevenly. Seven of
your ten initial interviews say they are for the internet provider contract. How large a sample
do you now need to provide an answer of which you can be fairly sure?

Using the techniques of the previous chapter, we can estimate that from a sample of fifty
people at least thirty-two would have to vote the same way for you to believe that the odds
are at least 19 to 1 that the sample does not misrepresent the universe, that is, that the sample
does not show a majority different from that of the whole universe if you polled everyone.

We do this by repeating the experiment in Section 21.2.3. In that experiment, we were doing
simulated trials in the 50:50 world, and looking at the proportion of simulated trials where
the count of yes votes was >= 30. We found the proportion of trials was about 10%. We are
interested to know the count for which we get less than 5%. We can do this by checking the
proportions for >=31, >= 32, and so on. It turns out that counts >= 32 occur a bit less than
5% of the time in the 50:50 world.
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Note 83: Notebook: Contract poll looking for >=32

• Download notebook
• Interact

This Python notebook generates samples of 50 simulated voters on the assumption that only
50 percent are in favor of the contract. Then it counts the number of generated samples where
32 or more of the 50 respondents said they were in favor of the contract.

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

n_trials = 10_000

yeses = np.zeros(n_trials)

for i in range(n_trials):
answers = rnd.choice(['No', 'Yes'], size=50)
yeses[i] = np.sum(answers == 'Yes')

k = np.sum(yeses >= 32)
kk = k / n_trials

print('Proportion >= 32:', np.round(kk, 2))

Proportion >= 32: 0.03

End of notebook: Contract poll looking for >=32

contract_poll_32 starts at Note 83.

We know, therefore, that if we see a voter “yes” count >= 32, there is only a small (>5%)
chance that arose from the 50:50 world.

Therefore, designate numbers 1-30 as no and 31-00 as yes in the random-number table (that is,
70 percent, as in your estimate based on your presample of ten), work through a trial sample
size of fifty, and count the number of yeses. Run through perhaps ten or fifteen trials, and
reckon how often the observed number of yeses is >= 32 (the number you must exceed for
a result you can rely on). In Table 30.9 we see that a sample of fifty respondents, from a
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universe split 70-30, will show that many yeses a preponderant proportion of the time — in
fact, in fifteen of fifteen experiments; therefore, the sample size of fifty is large enough if the
split is “really” 70-30.

Table 30.9: Number of “yes” votes out of 50 for 30% in favor universe

Trial No Yes Trial No Yes
1 13 37 9 15 35
2 14 36 10 9 41
3 18 32 11 15 35
4 10 40 12 15 35
5 13 37 13 9 41
6 15 35 14 16 34
7 14 36 15 17 33

The following Python program takes samples of size 50 from a universe that is 70% “yes.” It
then observes how often such samples produce more than 31 “yeses” — the number we must
get if we are to be sure enough that the sample is not from a 50/50 universe.

Note 84: Notebook: Sample size for an internet contract poll

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

# Number of trials.
n_trials = 10_000

# Make array to store results for each trial.
results = np.zeros(n_trials)

# Do 10,00 trials
for i in range(n_trials):

# Generate 50 voters with 70% chance of "yes“.
voters = rnd.choice(["yes", "no"], size=50, p=[0.7, 0.3])
# Count the "yeses".
n_yes = np.sum(voters == 'yes')
# Keep score of the result.
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results[i] = n_yes

# Count how often the sample result >= our 32 cutoff (recall that samples
# with 31 or fewer "yeses" cannot be ruled out of a 50/50 universe).
k = np.sum(results >= 32)
# Convert to a proportion
kk = k / n_trials

print('p of 50 voter samples in 70:30 universe >= 32 "yes":', kk)

p of 50 voter samples in 70:30 universe >= 32 "yes": 0.859

End of notebook: Sample size for an internet contract poll

poll_sample_size starts at Note 84.

If kk is close to 1, we can be confident that this sample will be large enough to avoid a result
that we might mistakenly think comes from a 50/50 universe (provided that the real universe
is 70% favorable).

30.3.2 Example: how large a sample for pig rations?

How large a sample is needed to determine whether there is any difference between the two
pig rations in Section 24.0.1? The first step is to guess the results of the tests. You estimate
that the average for ration A will be a weight gain of 32 pounds. You further guess that twelve
pigs on ration A might gain 36, 35, 34, 33, 33, 32, 32, 31, 31, 30, 29 and 28 pounds. This set
of guesses has an equal number of pigs above and below the average and more pigs close to
the average than farther away. That is, there are more pigs at 33 and 31 pounds than at 36
and 28 pounds. This would seem to be a reasonable distribution of pigs around an average of
32 pounds. In similar fashion, you guess an average weight gain of 28 pounds for ration B and
a distribution of 32, 31, 30, 29, 29, 28, 28, 27, 27, 26, 25, and 24 pounds.

Let us review the basic strategy. We want to find a sample size large enough so that a large
proportion of the time it will reveal a difference between groups big enough to be accepted as
not attributable to chance. First, then, we need to find out how big the difference must be to
be accepted as evidence that the difference is not attributable to chance. We do so from trials
with samples of the given size from the benchmark universe. We state that a difference larger
than the benchmark universe will usually produce is not attributable to chance.
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In this case, let us try samples of 12 pigs on each ration. First we draw two samples from
a combined benchmark universe made up of the results that we have guessed will come from
ration A and ration B. (The procedure is the same as was followed in Section 24.0.1).

Note 85: Notebook: Sample size for pig rations with bootstrap

• Download notebook
• Interact

First we need to get the measured data from the data file using the Pandas library:

import numpy as np
import matplotlib.pyplot as plt

# set up the random number generator
rnd = np.random.default_rng()

# Estimated weights for ration A.
a_weights = np.array([36, 35, 34, 33, 33, 32, 32, 31, 31, 30, 29, 28])
# Estimated weights for ration B.
b_weights = np.array([32, 31, 30, 29, 29, 28, 28, 27, 27, 26, 25, 24])

# Make a combined (benchmark) universe from the weights.
both = np.concatenate([a_weights, b_weights])

# Set the number of trials
n_trials = 10_000

# An empty array to store the trial results.
results = np.zeros(n_trials)

# Do 10,000 experiments.
for i in range(n_trials):

# Take a "resample" of 12 with replacement from both and put it in fake_a
fake_a = rnd.choice(both, size=12)
# Likewise to make fake_b
fake_b = rnd.choice(both, size=12)
# Mean of the first "resample" sample.
fake_a_mean = np.mean(fake_a)
# Mean of the second "resample" sample.
fake_b_mean = np.mean(fake_b)
# Calculate the difference between the two resamples.
fake_diff = fake_a_mean - fake_b_mean
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# Keep track of each trial result.
results[i] = fake_diff
# End one experiment, go back and repeat until all trials are complete,
# then proceed.

# Produce a histogram of trial results.
plt.hist(results, bins=25)
plt.xlabel('Second resample mean minus first')
plt.title('Distribution difference in means of resamples')

# Get the 95% percentile. Only 5% of results are above this value, by chance.
q_95 = np.quantile(results, 0.95)

print('95% quantile for resampled mean difference:', q_95)

95% quantile for resampled mean difference: 2.0

# Check the quantile.
k = np.sum(results > q_95)
kk = k / n_trials

print('Proportion > 95% quantile:', kk)

Proportion > 95% quantile: 0.0439
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We find that in only of the trials the difference between the two observed groups of 12 pigs
was more than 2. Now we investigate how often samples of 12 pigs, drawn from the separate
universes, will show a mean difference larger than 2 pounds. We do so by making up a deck
of 25 or 50 cards for each of the 12 hypothesized A’s and each of the 12 B’s, with the ration
name and the weight gain written on it — that is, a deck of, say, 300 cards for each ration.
Then from each deck we draw a set of 12 cards at random, record the group averages, and find
the difference.

Here is the same work done with more runs on the computer. In this version we are sampling
from the separate A and B universes we have estimated.

# A new empty array to store the trial results.
results = np.zeros(n_trials)

# Do 10,000 experiments.
for i in range(n_trials):

# Take a "resample" of 12 with replacement from A and put it in fake_a.
# Notice we are sampling from "a_weights" this time.
fake_a = rnd.choice(a_weights, size=12)
# Likewise to make fake_b
# Notice we are sampling from "b_weights" this time.
fake_b = rnd.choice(b_weights, size=12)
# Mean of the first "resample" sample.
fake_a_mean = np.mean(fake_a)
# Mean of the second "resample" sample.
fake_b_mean = np.mean(fake_b)
# Calculate the difference between the two resamples.
fake_diff = fake_a_mean - fake_b_mean
# Keep track of each trial result.
results[i] = fake_diff
# End one experiment, go back and repeat until all trials are complete,
# then proceed.

# Produce a histogram of trial results.
plt.hist(results, bins=25)
plt.xlabel('Second resample mean minus first, in separate universes')
plt.title('Distribution difference in means of resamples')

# What proportion of the differences are implausible in the combined universe?
k = np.sum(results >= q_95)
kk = k / n_trials

print('p for separate universe results >= 95% quantile:', kk)
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p for separate universe results >= 95% quantile: 0.9865
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If kk is close to one, we know that the sample size is large enough that samples drawn from
the universes we have hypothesized will not mislead us into thinking that they could come
from the same universe.

Therefore, two samples of twelve pigs each are clearly large enough, and, in fact, even smaller
samples might be sufficient if the universes are really like those we guessed at. If, on the other
hand, the differences in the guessed universes had been smaller, then twelve-pig groups would
have seemed too small and we would then have had to try out larger sample sizes, say forty-
eight pigs in each group and perhaps 200 pigs in each group if forty-eight were not enough.
And so on until the sample size is large enough to promise the accuracy we want. (In that
case, the decks would also have to be much larger, of course.)

If we had guessed different universes for the two rations, then the sample sizes required would
have been larger or smaller. If we had guessed the averages for the two samples to be closer
together, then we would have needed larger samples. Also, if we had guessed the weight
gains within each universe to be less spread out, the samples could have been smaller and vice
versa.

End of notebook: Sample size for pig rations with bootstrap

sample_size_rations starts at Note 85.
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30.4 Step-wise sample-size determination

Often it is wisest to determine the sample size as you go along, rather than fixing it firmly in
advance. In sequential sampling, you continue sampling until the split is sufficiently even to
make you believe you have a reliable answer.

Related techniques work in a series of jumps from sample size to sample size. Step-wise
sampling makes it less likely that you will take a sample that is much larger than necessary.
For example, in the internet contract survey case, if you took a sample of perhaps fifty you
could see whether the split was as wide as 32-18, which you figure you need for 9 to 1 odds that
your answer is right. If the split were not that wide, you would sample another fifty, another
100, or however large a sample you needed until you reached a split wide enough to satisfy you
that your answer was reliable and that you really knew which way the entire universe would
vote.

Step-wise sampling is not always practical, however, and the internet contract survey example
is unusually favorable for its use. One major pitfall is that the early responses to a mail survey,
for example, do not provide a random sample of the whole, and therefore it is a mistake simply
to look at the early returns when the split is not wide enough to justify a verdict. If you have
listened to early news reports of election returns, you know how misleading the reports from
the first precincts can be if we regard them as a fair sample of the whole.2

Stratified sampling is another device that helps reduce the sample size required, by balancing
the amounts of information you obtain in the various strata. (Cluster sampling does not reduce
the sample size. Rather, it aims to reduce the cost of obtaining a sample that will produce a
given level of accuracy.)

30.5 Summary

Sample sizes are too often determined on the basis of convention or of the available budget.
A more rational method of choosing the size of the sample is by balancing the diminution of
error expected with a larger sample, and its value, against the cost of increasing the sample

2See J. Lorie and H. Roberts (1951, 155–57) for more discussion of the limitations of sequential sampling.
Hansen et al (1953, 78), warn against the danger of increasing the sample size in this fashion:

A fairly obvious and flagrant way of arriving at biased results is to examine the returns from
an initial sample to determine whether they appear acceptable to the investigator; if they do,
he uses the results as they are; if they do not, he discards the sample results and draws a new
sample, perhaps by a different method, in the hope that he will obtain a result more nearly like
the one he expected. Such an approach can be utilized to obtain almost any results desired, or
can “prove” any point even when unbiased or consistent methods of selecting the sample and
making the individual estimates are used if the initial results are subject to relatively large
sampling errors.
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size. The relationship of various sample sizes to various degrees of accuracy can be estimated
with resampling methods, which are illustrated here.
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31 Bayesian Analysis by Simulation

This branch of mathematics [probability] is the only one, I believe, in which good
writers frequently get results entirely erroneous. (Peirce 1923, Doctrine of Chances,
II)

Bayesian analysis is a way of thinking about problems in probability and statistics that can
help one reach otherwise-difficult decisions. It also can sometimes be used in science. The
range of its recommended uses is controversial, but this chapter deals only with those uses of
Bayesian analysis that are uncontroversial.

Better than defining Bayesian analysis in formal terms is to demonstrate its use. We shall
start with the simplest sort of problem, and proceed gradually from there.

31.1 Simple decision problems

31.1.1 Assessing the Likelihood That a Used Car Will Be Sound

Consider a problem in estimating the soundness of a used car one considers purchasing (after
(Wonnacott and Wonnacott 1990, 93–94)). Seventy percent of the cars are known to be OK
on average, and 30 percent are faulty. Of the cars that are really OK, a mechanic correctly
identifies 80 percent as “OK” but says that 20 percent are “faulty”; of those that are faulty,
the mechanic correctly identifies 90 percent as faulty and says (incorrectly) that 10 percent
are OK.

We wish to know the probability that if the mechanic says a car is “OK,” it really is faulty.
Phrased differently, what is the probability of a car being faulty if the mechanic said it was
OK?

We can get the desired probabilities directly by simulation without knowing Bayes’ rule, as we
shall see. But one must be able to model the physical problem correctly in order to proceed
with the simulation; this requirement of a clearly visualized model is a strong point in favor
of simulation.

1. Note that we are only interested in outcomes where the mechanic approved a car.
2. For each car, generate a label of either “faulty” or “working” with probabilities of 0.3

and 0.7, respectively.
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3. For each faulty car, we generate one of two labels, “approved” or “not approved” with
probabilities 0.1 and 0.9, respectively.

4. For each working car, we generate one of two labels, “approved” or “not approved” with
probabilities 0.7 and 0.3, respectively.

5. Out of all cars “approved”, count how many are “faulty”. The ratio between these
numbers is our answer.

In-place operators in Python

In the code that follows, we are going to use a new and neat feature of Python, called
in-place operations.
We often find ourselves in the situation where we have some variable, say a, and we want
to do some operation on the value of a and then store the result in a again.
Of course, we could do something like this:

# The initial value of "a".
a = 10

# Set a to get the value of a plus 1.
a = a + 1
# Show the result.
a

11

Because this is such a common kind of thing to do, Python has special operators to do
this for us, called in-place operators. For the example above, there is an in-place addition
operator += that takes the value of the variable on the left hand side, adds the value
on the right hand side, and stores the result in the variable on the left hand side. For
example:

# The initial value of "b".
b = 10

# Set b to get the value of b plus 1.
# Notice the in-place operator "+=".
b += 1
# Show the result.
b

11

There are also in-place operators for subtraction (e.g. c -= 3), multiplication (e.g. d *=
2), and division (e /= 2).
You will see us using the in-place += in the code below.
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Here is the whole simulation of the car / mechanic problem:

Note 86: Notebook: Bayesian analysis of cars and mechanics

• Download notebook
• Interact

import numpy as np

# Set up the random number generator.
rnd = np.random.default_rng()

n_trials = 10000 # number of cars

# Counters for number of approved, number of approved and faulty
approved = 0
approved_and_faulty = 0

for i in range(n_trials):

# Decide whether the car is faulty or working, with a probability of
# 0.3 and 0.7 respectively
car = rnd.choice(['faulty', 'working'], p=[0.3, 0.7])

if car == 'faulty':
# What the mechanic says of a faulty car
mechanic_says = rnd.choice(['approved', 'not approved'], p=[0.1, 0.9])

else:
# What the mechanic says of a working car
mechanic_says = rnd.choice(['approved', 'not approved'], p=[0.7, 0.3])

if mechanic_says == 'approved':
approved += 1

if car == 'faulty':
approved_and_faulty += 1

k = approved_and_faulty / approved

print('Proportion of faulty cars of cars approved:', np.round(k, 2))

Proportion of faulty cars of cars approved: 0.06
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The answer looks to be somewhere between 5 and 6%. The code clearly follows the description
step by step, but it is also quite slow. If we can improve the code, we may be able to do our
simulation with more cars, and get a more accurate answer.

Let’s use arrays to store the states of all cars in the lot simultaneously:

# Number of cars; we made this number larger by a factor of 100
n_trials = 1_000_000

# Generate an array with as many entries as there are cars, each
# being either 'working' or 'faulty'
cars = rnd.choice(['working', 'faulty'], p=[0.7, 0.3], size=n_trials)

# Count how many cars are working
n_working = np.sum(cars == 'working')

# All the rest are faulty
n_faulty = n_trials - n_working

# Create a new array in which to store what a mechanic says
# about the car: 'approved' or 'not approved'. Use
# dtype=object because we need to store strings.
mechanic_says = np.zeros(n_trials, dtype=object)

# We start with the working cars; what does the mechanic say about them?
# Generate 'approved' or 'not approved' labels with the given probabilities.
mechanic_says[cars == 'working'] = rnd.choice(

['approved', 'not approved'], p=[0.8, 0.2], size=n_working
)

# Similarly, for each faulty car, generate 'approved'/'not approved'
# labels with the given probabilities.
mechanic_says[cars == 'faulty'] = rnd.choice(

['approved', 'not approved'], p=[0.1, 0.9], size=n_faulty
)

# Identify all cars that were approved
# This produces a binary mask, an array that looks like:
# [True, False, False, True, ... ]
approved = (mechanic_says == 'approved')

# Identify cars that are faulty AND were approved
faulty_but_approved = (cars == 'faulty') & approved
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# Count the number of cars that are faulty but approved, as well as
# the total number of cars that were approved
n_faulty_but_approved = np.sum(faulty_but_approved)
n_approved = np.sum(approved)

# Calculate the ratio, which is the answer we seek
k = n_faulty_but_approved / n_approved

print('Proportion of faulty cars of cars approved:', np.round(k, 2))

Proportion of faulty cars of cars approved: 0.05

The code now runs much faster, and with a larger number of cars we see that the answer is
closer to a 5% chance of a car being broken after it has been approved by a mechanic.

End of notebook: Bayesian analysis of cars and mechanics

bayes_cars starts at Note 86.

31.1.2 Calculation without simulation

Simulation forces us to model our problem clearly and concretely in code. Such code is most
often easier to reason about than opaque statistical methods. Running the simulation gives a
good sense of what the correct answer should be. Thereafter, we can still look into different
— sometimes more elegant or accurate — ways of modeling and solving the problem.

Let’s examine the following diagram of our car selection:
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We see that there are two paths, highlighted, that results in a car being approved by a mechanic.
Either a car can be working, and correctly identified as such by a mechanic; or the car can
be broken, while the mechanic mistakenly determines it to be working. Our question only
pertains to these two paths, so we do not need to study the rest of the tree.

In the long run, in our simulation, about 70% of the cars will end with the label “working”,
and about 30% will end up with the label “faulty”. We just took 10000 sample cars above but,
in fact, the larger the number of cars we take, the closer we will get to 70% “working” and
30% “faulty”. So, with many samples, we can think of 70% of these samples flowing down the
“working” path, and 30% flowing along the “faulty” path.

Now, we want to know, of all the cars approved by a mechanic, how many are faulty:

carsfaulty
carsapproved

We follow the two highlighted paths in the tree:

1. Of a large sample of cars, 30% are faulty. Of these, 10% are approved by a mechanic.
That is, 30% * 10% = 3% of all cars.

2. Of all cars, 70% work. Of these, 80% are approved by a mechanic. That is, 70% * 80%
= 56% of all cars.
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The percentage of faulty cars, out of approved cars, becomes:

3%/(56% + 3%) = 5.08%

Notation-wise, it is a bit easier to calculate these sums using proportions rather than percent-
ages:

1. Faulty cars approved by a mechanic: 0.3 * 0.1 = 0.03
2. Working cars approved by a mechanic: 0.7 * 0.8 = 0.56

Fraction of faulty cars out of approved cars: 0.03 / (0.03 + 0.56) = 0.0508

We see that every time the tree branches, it filters the cars: some go to one branch, the
rest to another. In our code, we used the AND (&) operator to find the intersection between
faulty AND approved cars, i.e., to filter out from all faulty cars only the cars that were ALSO
approved.

31.2 Probability interpretation

31.2.1 Probability from proportion

In these examples, we often calculate proportions. In the given simulation:

• How many cars are approved by a mechanic? 59/100.
• How many of those 59 were faulty? 3/59.

We often also count how commonly events occur: “it rained 4 out of the 10 days”.

An extension of this idea is to predict the probability of an event occurring, based on what we
had seen in the past. We can say “out of 100 days, there was some rain on 20 of them; we
therefore estimate that the probability of rain occurring is 20/100”. Of course, this is not a
complex or very accurate weather model; for that, we’d need to take other factors—such as
season—into consideration. Overall, the more observations we have, the better our probability
estimates become. We discussed this idea previously in “The Law of Large Numbers”.
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31.2.1.1 Ratios of proportions

At our mechanic’s yard, we can ask “how many red cars here are faulty”? To calculate that,
we’d first count the number of red cars, then the number of those red cars that are also broken,
then calculate the ratio: red_cars_faulty / red_cars.

We could just as well have worked in percentages: percentage_of_red_cars_broken /
percentage_of_cars_that_are_red, since that is (red_cars_broken / 100) / (red_cars
/ 100)—the same ratio calculated before.

Our point is that the denominator doesn’t matter when calculating ratios, so we could just as
well have written:

(red_cars_broken / all_cars) / (red_cars / all_cars)

or

𝑃(cars that are red and that are broken)/𝑃(red cars)

31.2.2 Probability relationships: conditional probability

Here’s one way of writing the probability that a car is broken:

𝑃(car is broken)

We can shorten “car is broken” to B, and write the same thing as:

𝑃(𝐵)

Similarly, we could write the probability that a car is red as:

𝑃(𝑅)

We might also want to express the conditional probability, as in the probability that the car is
broken, given that we already know that the car is red:

𝑃(car is broken GIVEN THAT car is red)

That is getting getting pretty verbose, so we will shorten this as we did above:

𝑃(𝐵 GIVEN THAT 𝑅)
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To make things even more compact, we write “GIVEN THAT” as a vertical bar | — so the
whole thing becomes:

𝑃(𝐵|𝑅)

We read this as “the probability that the car is broken given that the car is red”. Such a prob-
ability is known as a conditional probability. We discuss these in more detail in Section 8.13.

In our original problem, we ask what the chance is of a car being broken given that a mechanic
approved it. As discussed under “Ratios of proportions”, it can be calculated with:

𝑃(car broken | mechanic approved) =
𝑃 (car broken and mechanic approved)/𝑃 (mechanic approved)

We have already used 𝐵 to mean “broken” (above), so let us use 𝐴 to mean “mechanic ap-
proved”. Then we can write the statement above in a more compact way:

𝑃(𝐵|𝐴) = 𝑃(𝐵 and 𝐴)/𝑃(𝐴)

To put this generally, conditional probabilities for two events 𝑋 and 𝑌 can be written as:

𝑃(𝑋|𝑌 ) = 𝑃 (𝑋 and 𝑌 )/𝑃(𝑌 )
Where (again) and means that both events occur.

31.2.3 Example: conditional probability

Let’s discuss a very relevant example. You get a Covid test, and the test is negative. Now,
you would like to know what the chance is of you having Covid.

We have the following information:

• 1.5% of people in your area have Covid
• The false positive rate of the tests (i.e., that they detect Covid when it is absent) is very

low at 0.5%
• The false negative rate (i.e., that they fail to detect Covid when it is present) is quite

high at 40%
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Again, we start with our simulation.

Note 87: Notebook: Bayesian analysis of Covid test result

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

# The number of people.
n_trials = 1_000_000

# For each person, generate a True or False label,
# indicating that they have / don't have Covid.
person_has_covid = rnd.choice(

[True, False], p=[0.015, 0.985],
size=n_trials

)
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# Calculate the numbers of people with and without Covid.
n_with_covid = np.sum(person_has_covid)
n_without_covid = n_trials - n_with_covid

# In this array, we will store, for each person, whether they
# had a positive or a negative test.
test_result = np.zeros(n_trials, dtype=bool)

# Draw test results for people with Covid.
test_result[person_has_covid] = rnd.choice(

[True, False], p=[0.6, 0.4],
size=n_with_covid

)

# Draw test results for people without Covid.
# ~person_has_covid` flips all Boolean values from FALSE to TRUE
# and from TRUE to FALSE.
test_result[~person_has_covid] = rnd.choice(

[True, False], p=[0.005, 0.995],
size=n_without_covid

)

# Get the Covid statuses of all those with negative tests
# (`test_result` is a Boolean mask, like `[True, False, False, True, ...]`,
# and `~test_result` flips all Boolean values to `[False, True, True, False, ...]`.
covid_status_negative_test = person_has_covid[~test_result]

# Now, count how many with Covid had a negative test results.
n_with_covid_and_negative_test = np.sum(covid_status_negative_test)

# And how many people, overall, had negative test results.
n_with_negative_test = len(covid_status_negative_test)

k = n_with_covid_and_negative_test / n_with_negative_test

print('Proportion with Covid of those with negative test:', np.round(k, 4))

Proportion with Covid of those with negative test: 0.0061

This gives around 0.006 or 0.6%.
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End of notebook: Bayesian analysis of Covid test result

bayes_covid starts at Note 87.

Now that we have a rough indication of what the answer should be, let’s try and calculate it
directly, based on the tree of information shown earlier.

We will use these abbreviations:

• 𝐶+ means Covid positive (you do actually have Covid).
• 𝐶− means Covid negative (you do not actually have Covid).
• 𝑇 + means the Covid test was positive.
• 𝑇 − means the Covid test was negative.

For example 𝑃(𝐶+|𝑇 −) is the probability (𝑃 ) that you do actually have Covid (𝐶+) given that
(|) the test was negative (𝑇 −).

We would like to know the probability of having Covid given that your test was negative
(𝑃(𝐶+|𝑇 −)). Using the conditional probability relationship from above, we can write:

𝑃(𝐶+|𝑇 −) = 𝑃(𝐶+ and 𝑇 −)/𝑃 (𝑇 −)

We see from the tree diagram that 𝑃(𝐶+ and 𝑇 −) = 𝑃(𝑇 −|𝐶+) ∗ 𝑃 (𝐶+) = .4 ∗ .015 = 0.006.
We observe that 𝑃 (𝑇 −) = 𝑃(𝑇 − and 𝐶−) + 𝑃(𝑇 − and 𝐶+), i.e. that we can obtain a negative
test result through two paths, having Covid or not having Covid. We expand these further as
conditional probabilities:

𝑃(𝑇 − and 𝐶−) = 𝑃 (𝑇 −|𝐶−) ∗ 𝑃 (𝐶−)
and

𝑃(𝑇 − and 𝐶+) = 𝑃 (𝑇 −|𝐶+) ∗ 𝑃 (𝐶+).
We can now calculate

𝑃(𝑇 −) = 𝑃(𝑇 −|𝐶−) ∗ 𝑃 (𝐶−) + 𝑃(𝑇 −|𝐶+) ∗ 𝑃 (𝐶+)

= .995 ∗ .985 + .4 ∗ .015 = 0.986

The answer, then, is:

𝑃(𝐶+|𝑇 −) = 0.006/0.986 = 0.0061 or 0.61%.

This matches very closely our simulation result, so we have some confidence that we have done
the calculation correctly.
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31.2.4 Estimating Driving Risk for Insurance Purposes

Another sort of introductory problem, following after (Feller 1968, p 122):

Note 88: Notebook: Bayesian analysis for insurance premium

• Download notebook
• Interact

A mutual insurance company charges its members according to the risk of having an car
accident. It is known that there are two classes of people — 80 percent of the population
with good driving judgment and with a probability of .06 of having an accident each year, and
20 percent with poor judgment and a probability of .6 of having an accident each year. The
company’s policy is to charge $100 for each percent of risk, i. e., a driver with a probability
of .6 should pay 60*$100 = $6000.

If nothing is known of a driver except that they had an accident last year, what fee should
they pay?

Another way to phrase this question is: given that a driver had an accident last year, what is
the probability of them having an accident overall?

We will proceed as follows:

1. Generate a population of N people. Label each as good driver or poor driver.
2. Simulate the last year for each person: did they have an accident or not?
3. Select only the ones that had an accident last year.
4. Among those, calculate what their average risk is of making an accident. This will

indicate the appropriate insurance premium.

import numpy as np

rnd = np.random.default_rng()

n_trials = 100_000
cost_per_percent = 100

people = rnd.choice(
['good driver', 'poor driver'], p=[0.8, 0.2],
size=n_trials

)

good_driver = (people == 'good driver')
poor_driver = ~good_driver

604

https://resampling-stats.github.io/edition-3-python/notebooks/bayes_accidents.ipynb
https://resampling-stats.github.io/edition-3-python/interact/lab/index.html?path=bayes_accidents.ipynb


# Did they have an accident last year?
had_accident = np.zeros(n_trials, dtype=bool)
had_accident[good_driver] = rnd.choice(

[True, False], p=[0.06, 0.94],
size=np.sum(good_driver)

)
had_accident[poor_driver] = rnd.choice(

[True, False], p=[0.6, 0.4],
size=np.sum(poor_driver)

)

ppl_with_accidents = people[had_accident]
n_good_driver_accidents = np.sum(ppl_with_accidents == 'good driver')
n_poor_driver_accidents = np.sum(ppl_with_accidents == 'poor driver')
n_all_with_accidents = n_good_driver_accidents + n_poor_driver_accidents

avg_risk_percent = ((n_good_driver_accidents * 0.06 +
n_poor_driver_accidents * 0.6) /
n_all_with_accidents * 100)

premium = avg_risk_percent * cost_per_percent

print('Premium is:', np.round(premium))

Premium is: 4462.0

The answer should be around 4450 USD.

End of notebook: Bayesian analysis for insurance premium

bayes_accidents starts at Note 88.

31.2.5 Screening for Disease

This is a classic Bayesian problem (quoted by Tversky and Kahneman (1982, 154), from
Cascells et al. (1978, 999)):

If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of
5%, what is the chance that a person found to have a positive result actually has
the disease, assuming you know nothing about the person’s symptoms or signs?
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Tversky and Kahneman note that among the respondents — students and staff at Harvard
Medical School — “the most common response, given by almost half of the participants, was
95%” — very much the wrong answer.

To obtain an answer by simulation, we may rephrase the question above with (hypothetical)
absolute numbers as follows:

If a test to detect a disease whose prevalence has been estimated to be about 100,000 in the
population of 100 million persons over age 40 (that is, about 1 in a thousand) has been observed
to have a false positive rate of 60 in 1200 observations, and never gives a negative result if a
person really has the disease, what is the chance that a person found to have a positive result
actually has the disease, assuming you know nothing about the person’s symptoms or signs?

If the raw numbers are not available, the problem can be phrased in such terms as “about 1
case in 1000” and “about 5 false positives in 100 cases.”

One may obtain an answer as follows:

1. Construct bucket A with 999 white beads and 1 black bead, and bucket B with 95 green
beads and 5 red beads. A more complete problem that also discusses false negatives
would need a third bucket.

2. Pick a bead from bucket A. If black, record “T,” replace the bead, and end the trial. If
white, continue to step 3.

3. If a white bead is drawn from bucket A, select a bead from bucket B. If red, record “F”
and replace the bead, and if green record “N” and replace the bead.

4. Repeat steps 2-4 perhaps 10,000 times, and in the results count the proportion of “T”s
to (“T”s plus “F”s) ignoring the “N”s).

Of course 10,000 draws would be tedious, but even after a few hundred draws a person
would be likely to draw the correct conclusion that the proportion of “T”s to (“T”s plus
“F”s) would be small. And it is easy with a computer to do 10,000 trials very quickly.

Note that the respondents in the Cascells et al. study were not naive; the medical staff
members were supposed to understand statistics. Yet most doctors and other personnel
offered wrong answers. If simulation can do better than the standard deductive method,
then simulation would seem to be the method of choice. And only one piece of training
for simulation is required: Teach the habit of saying “I’ll simulate it” and then actually
doing so.
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31.3 Fundamental problems in statistical practice

Box and Tiao (1992) begin their classic exposition of Bayesian statistics with the analysis of
a famous problem first published by Fisher (1959, 18).

…there are mice of two colors, black and brown. The black mice are of two ge-
netic kinds, homozygotes (BB) and heterozygotes (Bb), and the brown mice are of
one kind (bb). It is known from established genetic theory that the probabilities
associated with offspring from various matings are as listed in Table 31.1.

(See (Box and Tiao 1992, 12–14)).

Table 31.1: Probabilities for Genetic Character of Mice Offspring

BB (black) Bb (black) bb (brown)
BB mated with bb 0 1 0
Bb mated with bb 0 ½ ½
Bb mated with Bb ¼ ½ ¼

Suppose we have a “test” mouse which has been produced by a mating between two (Bb) mice
and is black. What is the genetic kind of this mouse?

To answer that, we look at the information in the last line of the table: it shows that the
probabilities of a test mouse is of kind BB and Bb are precisely known, and are 1/3 and 2/3
respectively ((1/4)/(1/4 + 1/2) vs (1/2)/(1/4 + 1/2)). We call this our “prior” estimate —
in other words, our estimate before seeing data.

Suppose the test mouse is now mated with a brown mouse (of kind bb) and produces seven
black offspring. Before, we thought that it was more likely for the parent to be of kind Bb
than of kind BB. But if that were true, then we would have expected to have seen some brown
offspring (the probability of mating Bb with bb resulting in brown offspring is given as 0.5).
Therefore, we sense that it may now be more likely that the parent was of type BB instead.
How do we quantify that?

One can calculate, as Fisher (1959, 19) did, the probabilities after seeing the data (we call this
the posterior probability). This is typically done using using Bayes’ rule.

But instead of doing that, let’s take the easy route out and simulate the situation instead.

1. We begin, as do Box and Tiao, by restricting our attention to the third line in Table 31.1.
We draw a mouse with label ‘BB’, ‘Bb’, or ‘bb’, using those probabilities. We were told
that the “test mouse” is black, so if we draw ‘bb’, we try again. (Alternatively, we could
draw ‘BB’ and ‘Bb’ with probabilities of 1/3 and 2/3 respectively.)
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2. We now want to examine the offspring of the test mouse when mated with a brown “bb”
mouse. Specifically, we are only interested in cases where all offspring were black. We
will store the genetic kind of the parents of such offspring so that we can count them
later.

If our test mouse is “BB”, we already know that all their offspring will be black (“Bb”).
Thus, store “BB” in the parent list.

3. If our test mouse is “Bb”, we have a bit more work to do. Draw seven offspring from the
middle row of Table 31.1. If all the offspring are black, store “Bb” in the parent list.

4. Repeat steps 1-3 perhaps 10000 times.

5. Now, out of all parents count the numbers of “BB” vs “Bb”.

We will do a naïve implementation that closely follows the logic described above, followed by
a slightly optimized version.

Note 89: Notebook: A problem of black and brown mice

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

n_trials = 100_000

# Make an array to store results for each trial.
# The results are strings, so use dtype=object.
# Many of these we will not set, for example, for brown mice (see below).
parents = np.zeros(n_trials, dtype=object)

for i in range(n_trials):
test_mouse = rnd.choice(['BB', 'Bb', 'bb'], p=[0.25, 0.5, 0.25])

# The test mouse is black; since we drew a brown mouse skip this trial
if test_mouse == 'bb':

# continue has the effect of aborting this iteration of the loop
# and going back to start the next iteration. If the code gets
# to "continue", none of the rest of the loop (indented) code
# will run.
continue

608

https://resampling-stats.github.io/edition-3-python/notebooks/box_tao_mice.ipynb
https://resampling-stats.github.io/edition-3-python/interact/lab/index.html?path=box_tao_mice.ipynb


# If the test mouse is 'BB', all 7 children are guaranteed to
# be 'Bb' black.
# Therefore, add 'BB' to the parent list.
if test_mouse == 'BB':

parents[i] = 'BB'

# If the parent mouse is 'Bb', we draw 7 children to
# see whether all of them are black ('Bb').
# The probabilities come from the middle row of the table.
if test_mouse == 'Bb':

children = rnd.choice(['Bb', 'bb'], p=[0.5, 0.5], size=7)
if np.all(children == 'Bb'):

parents[i] = 'Bb'

# Now, count how many parents were 'BB' vs 'Bb'
n_parents_BB = np.sum(parents == 'BB')
n_parents_Bb = np.sum(parents == 'Bb')
n_B = n_parents_BB + n_parents_Bb

p_BB = n_parents_BB / n_B
p_Bb = n_parents_Bb / n_B

print('p_BB =', np.round(p_BB, 3))

p_BB = 0.985

print('p_Bb =', np.round(p_Bb, 3))

p_Bb = 0.015

print('Ratio =', np.round(p_BB / p_Bb, 1))

Ratio = 66.0

We see that all the offspring being black considerably changes the situation! We started with
the odds being 2:1 in favor of Bb vs BB. The “posterior” or “after the evidence” ratio is closer
to 64:1 in favor of BB! (1973, pp. 12-14)

Let’s tune the code a bit to run faster. Instead of doing the trials one mouse at a time, we
will do the whole bunch together.
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To do this, we will use two-dimensional arrays.

So far, nearly all the arrays we have used are one-dimensional. A one-dimensional array is
a sequence of values. Let us generate a one-dimensional array with rnd.choice, as we have
many times in this book, and in this chapter.

# A one-dimensional array, with five elements.
one_d = rnd.choice([1, 2], size=5)
one_d

array([2, 2, 1, 1, 1])

However, we can also generate arrays with more than one dimension. In particular we can
generate arrays with two dimensions. An array with two dimensions has rows and columns,
much like a Pandas data frame. However, unlike data frames, two-dimensional arrays have no
row or column names. Here is a two-dimensional array we create with rnd.choice, by passing
two values to the size argument:

# A two-dimensional array with five rows and three columns.
two_d = rnd.choice([1, 2], size=(5, 3))
two_d

array([[1, 1, 2],
[1, 2, 1],
[1, 2, 2],
[1, 1, 1],
[2, 2, 2]])

As usual, we can apply Boolean comparison operations to this array, to get a two-dimensional
Boolean array:

is_2 = two_d == 2
is_2

array([[False, False, True],
[False, True, False],
[False, True, True],
[False, False, False],
[ True, True, True]])
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Numpy thinks of two-dimensional arrays as having two axes, where the first axis (axis at
position 0) is the row axis, and the second axis (at position 1) is the column axis.

Many Numpy functions have an axis argument that asks the function to apply its operation
along a particular axis. For example, we might want to ask whether all the values in each
column (across axis position 1) are equal to 2. We can do this using np.all:

all_equal_2 = np.all(is_2, axis=1)
all_equal_2

array([False, False, False, False, True])

Notice that we get one answer for each row (axis=0), where the answer is np.all across the
columns, for that row.

n_trials = 1_000_000

# In n_trials trials, pair two Bb mice and generate a child.
test_mice = rnd.choice(['BB', 'Bb', 'bb'], p=[0.25, 0.5, 0.25], size=n_trials)

# The resulting test mouse is black, so filter out all brown ones.
test_mice = test_mice[test_mice != 'bb']
n_test_mice = len(test_mice)

# Each test mouse will now be mated with a brown mouse, producing 7 offspring.
# We then store whether all the offspring were black or not.
all_offspring_black = np.zeros(n_test_mice, dtype=bool)

# If a test mouse is 'BB', we are assured that all its offspring
# will be black.
all_offspring_black[test_mice == 'BB'] = True

# If a test mouse is 'Bb', we have to generate its offspring and
# see whether they are all black or not.
test_mice_Bb = (test_mice == 'Bb')
n_test_mice_Bb = np.sum(test_mice_Bb)

# Generate all offspring of all 'Bb' test mice.
# This gives a 2-dimensional array, with one row per Bb mouse,
# and 7 columns, one for each child.
offspring = rnd.choice(

['Bb', 'bb'], p=[0.5, 0.5], size=(n_test_mice_Bb, 7)
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)
# Check whether all children (columns) are Bb, for each row.
all_offspring_black[test_mice_Bb] = np.all(offspring == 'Bb', axis=1)

# Find the genetic types of the parents of all-black offspring.
parents = test_mice[all_offspring_black]

# Calculate what fraction of parents were 'BB' vs 'Bb'.
parents_BB = (parents == 'BB')
parents_Bb = (parents == 'Bb')
n_B = np.sum(all_offspring_black)

p_BB = np.sum(parents_BB) / n_B
p_Bb = np.sum(parents_Bb) / n_B

print('p_BB = ', np.round(p_BB, 3))

p_BB = 0.984

print('p_Bb = ', np.round(p_Bb, 3))

p_Bb = 0.016

print('Ratio = ', np.round(p_BB / p_Bb, 1))

Ratio = 63.4

This yields a similar result, but in much shorter time — which means we can increase the
number of trials and get a more accurate result.

End of notebook: A problem of black and brown mice

box_tao_mice starts at Note 89.

Creating the correct simulation procedure is not trivial, because Bayesian reasoning is subtle
— a reason it has been the cause of controversy for more than two centuries. But it certainly
is not easier to create a correct procedure using analytic tools (except in the cookbook sense
of plug-and-pray). And the difficult mathematics that underlie the analytic method (see e.g.
(Box and Tiao 1992, Appendix A1.1)) make it almost impossible for the statistician to fully
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understand the procedure from beginning to end. If one is interested in insight, the simulation
procedure might well be preferred.1

31.4 Problems based on normal and other distributions

This section should be skipped by all except advanced practitioners of statistics.

Much of the work in Bayesian analysis for scientific purposes treats the combining of prior
distributions having Normal and other standard shapes with sample evidence which may also
be represented with such standard functions. The mathematics involved often is formidable,
though some of the calculational formulas are fairly simple and even intuitive.

These problems may be handled with simulation by replacing the Normal (or other) distribu-
tion with the original raw data when data are available, or by a set of discrete sub-universes
when distributions are subjective.

Measured data from a continuous distribution present a special problem because the probability
of any one observed value is very low, often approaching zero, and hence the probability of
a given set of observed values usually cannot be estimated sensibly; this is the reason for
the conventional practice of working with a continuous distribution itself, of course. But a
simulation necessarily works with discrete values. A feasible procedure must bridge this gulf.

The logic for a problem of Schlaifer’s (1961, example 17.1) will only be sketched out. The
procedure is rather novel, but it has not heretofore been published and therefore must be
considered tentative and requiring particular scrutiny.

31.4.1 An Intermediate Problem in Conditional Probability

Schlaifer employs a quality-control problem for his leading example of Bayesian estimation
with Normal sampling. A chemical manufacturer wants to estimate the amount of yield of a
crucial ingredient X in a batch of raw material in order to decide whether it should receive
special handling. The yield ranges between 2 and 3 pounds (per gallon), and the manufacturer
has compiled the distribution of the last 100 batches.

1We can use a similar procedure to illustrate an aspect of the Bayesian procedure that Box and Tiao emphasize,
its sequentially-consistent character. First let us carry out the above procedure but observe only three black
balls in a row. The program to be used is the same except for the insertion of “3” for “7” where “7” appears.
We then estimate the probability for BB, which turns out to be about 1/5 instead of about 1/65. We then
substitute for bucket A a bucket A’ with appropriate numbers of black Bb’s and black BB’s, to represent
the “updated” prior probability. We may then continue by substituting “4” for “3” above (to attain a total
of seven observed black balls), and find that the probability is about what it was when we observed 7 black
balls in a single sample (1/65). This shows that the Bayesian procedure accumulates information without
“leakage” and with consistency.
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The manufacturer currently uses the decision rule that if the mean of nine samples from the
batch (which vary only because of measurement error, which is the reason that he takes nine
samples rather than just one) indicates that the batch mean is greater than 2.5 gallons, the
batch is accepted. The first question Schlaifer asks, as a sampling-theory waystation to the
more general question, is the likelihood that a given batch with any given yield — say 2.3
gallons — will produce a set of samples with a mean as great or greater than 2.5 gallons.

We are told that the manufacturer has in hand nine samples from a given batch; they are 1.84,
1.75, 1.39, 1.65, 3.53, 1.03, 2.73, 2.86, and 1.96, with a mean of 2.08. Because we are also
told that the manufacturer considers the extent of sample variation to be the same at all yield
levels, we may — if we are again working with 2.3 as our example of a possible universe —
therefore add (2.3 minus 2.08 =) 0.22 to each of these nine observations, so as to constitute
a bootstrap-type universe; we do this on the grounds that this is our best guess about the
constitution of that distribution with a mean at (say) 2.3.

We then repeatedly draw samples of nine observations from this distribution (centered at 2.3)
to see how frequently its mean exceeds 2.5. This work is so straightforward that we need not
even state the steps in the procedure.

31.4.2 Estimating the Posterior Distribution

Next we estimate the posterior distribution. Figure 31.1 shows the prior distribution of batch
yields, based on 100 previous batches.

.2

.1

0
0

2.02.22.42.62.83.03.2

Figure 31.1: Posterior distribution of batch yields

Notation: S m = set of batches (where total S = 100) with a particular mean m (say, m =
2.1). x i = particular observation (say, x 3 = 1.03). s = the set of x i .

We now perform for each of the S m (categorized into the tenth-of-gallon divisions between
2.1 and 3.0 gallons), each corresponding to one of the yields ranging from 2.1 to 3.0, the same
sort of sampling operation performed for S m=2.3 in the previous problem. But now, instead of
using the manufacturer’s decision criterion of 2.5, we construct an interval of arbitrary width
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around the sample mean of 2.08 — say at .1 intervals from 2.03 to 2.13 — and then work with
the weighted proportions of sample means that fall into this interval.

1. Using a bootstrap-like approach, we presume that the sub-universe of observations re-
lated to each S m equals the mean of that S m — say, 2.1) plus (minus) the mean of the
x i (equals 2.05) added to (subtracted from) each of the nine x i , say, 1.03 + .05 = 1.08.
For a distribution centered at 2.3, the values would be (1.84 + .22 = 2.06, 1.75 + .22 =
1.97…).

2. Working with the distribution centered at 2.3 as an example: Constitute a universe of the
values (1.84+.22=2.06, 1.75 + .22 = 1.97…). Here we may notice that the variability in
the sample enters into the analysis at this point, rather than when the sample evidence
is combined with the prior distribution; this is in contrast to conventional Bayesian
practice where the posterior is the result of the prior and sample means weighted by the
reciprocals of the variances (see e.g. (Box and Tiao 1992, 17 and Appendix A1.1)).

3. Draw nine observations from this universe (with replacement, of course), compute the
mean, and record.

4. Repeat step 2 perhaps 1000 times and plot the distribution of outcomes.
5. Compute the percentages of the means within (say) .5 on each side of the sample mean,

i. e. from 2.03–2.13. The resulting number — call it UP i — is the un-standardized
(un-normalized) effect of this sub-distribution in the posterior distribution.

6. Repeat steps 1-5 to cover each other possible batch yield from 2.0 to 3.0 (2.3 was just
done).

7. Weight each of these sub-distributions — actually, its UP i — by its prior probability,
and call that WP i -.

8. Standardize the WP i s to a total probability of 1.0. The result is the posterior dis-
tribution. The value found is 2.283, which the reader may wish to compare with a
theoretically-obtained result (which Schlaifer does not give).

This procedure must be biased because the numbers of “hits” will differ between the two sides
of the mean for all sub-distributions except that one centered at the same point as the sample,
but the extent and properties of this bias are as-yet unknown. The bias would seem to be
smaller as the interval is smaller, but a small interval requires a large number of simulations;
a satisfactorily narrow interval surely will contain relatively few trials, which is a practical
problem of still-unknown dimensions.

Another procedure — less theoretically justified and probably more biased — intended to get
around the problem of the narrowness of the interval, is as follows:

5. (5a.) Compute the percentages of the means on each side of the sample mean, and note
the smaller of the two (or in another possible process, the difference of the two). The
resulting number — call it UP i — is the un-standardized (un-normalized) weight of this
sub-distribution in the posterior distribution.
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Another possible criterion — a variation on the procedure in 5a — is the difference between
the two tails; for a universe with the same mean as the sample, this difference would be zero.

31.5 Conclusion

All but the simplest problems in conditional probability are confusing to the intuition even if
not difficult mathematically. But when one tackles Bayesian and other problems in probability
with experimental simulation methods rather than with logic, neither simple nor complex
problems need be difficult for experts or beginners.

This chapter shows how simulation can be a helpful and illuminating way to approach problems
in Bayesian analysis.

Simulation has two valuable properties for Bayesian analysis:

1. It can provide an effective way to handle problems whose analytic solution may be
difficult or impossible.

2. Simulation can provide insight to problems that otherwise are difficult to understand
fully, as is peculiarly the case with Bayesian analysis.

Bayesian problems of updating estimates can be handled easily and straightforwardly with
simulation, whether the data are discrete or continuous. The process and the results tend to
be intuitive and transparent. Simulation works best with the original raw data rather than
with abstractions from them via percentages and distributions. This can aid the understanding
as well as facilitate computation.
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A Exercise Solutions

A.1 Solution for paired differences exercise 24.3.1

We suggested that you ignored the pairing of the before and after samples, and that is what
we will do here. Then we will extend the treatment to take the pairing into account.

Note 90: Notebook: Paired differences solution

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

rnd = np.random.default_rng()

df = pd.read_csv('data/hamilton.csv')
before = np.array(df['score_before'])
after = np.array(df['score_after'])

observed_diff = np.mean(after) - np.mean(before)

# Let us start with a permutation test.
both = np.concatenate([before, after])
n_before = len(before)

# Samples in the null world.
n_trials = 10_000
results = np.zeros(n_trials)
for i in range(n_trials):

shuffled = rnd.permuted(both)
fake_before = shuffled[:n_before]
fake_after = shuffled[n_before:]
fake_diff = np.mean(fake_after) - np.mean(fake_before)
results[i] = fake_diff
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# We are interested in fake differences that are larger
# in magnitude than the observed difference (hence "abs").
# Here we have no prior hypothesis about which direction the difference
# will go.
k = np.sum(np.abs(results) >= np.abs(observed_diff))
kk = k / n_trials
print('Permutation p null-world abs >= abs observed:', kk)

Permutation p null-world abs >= abs observed: 0.2554

# Next a bootstrap test.
n_after = len(after) # Of course, in our case, this will be == n_before
results = np.zeros(n_trials)
for i in range(n_trials):

fake_before = rnd.choice(both, size=n_before)
fake_after = rnd.choice(both, size=n_after)
fake_diff = np.mean(fake_after) - np.mean(fake_before)
results[i] = fake_diff

k = np.sum(np.abs(results) >= np.abs(observed_diff))
kk = k / n_trials
print('Bootstrap p null-world abs >= abs observed:', kk)

Bootstrap p null-world abs >= abs observed: 0.2217

Finally we consider the pairs. Here we do take the pairs into account. We have some reason
to think that the patients or cars vary in some substantial way in their level of depression, or
their tendency to break down, but we believe that the patients’ response to treatment or the
difference between the mechanics is the value of interest.

In that case, we are interested in the differences between the pairs. In the null world, these
before / after (mechanic A / mechanic B) differences are random. In the null-world, where
there is no difference between before/after or mechanics 1 and 2, we can flip the before / after
(A / B) pairs and be in the same world.

Notice that flipping the before / after or A / B in the pair just changes the sign of the
difference.

So we will simulate the effect of flipping the values in the pair, by choosing a random sign for
the pair, where -1 means pair is flipped, and 1 means pair is in original order. We recalculated
the mean difference with these random signs (flips) applied, and these will be our values in
the null-world.
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# A test of paired difference with sign flips for the null world.
differences = after - before
observed_mdiff = np.mean(differences)
n_both = len(differences)

results = np.zeros(n_trials)
for i in range(n_trials):

# Choose random signs to perform random flips of the pairs.
signs = rnd.choice([-1, 1], size=n_both)
# Do flips.
fake_differences = signs * differences
# Calculate mean difference and store result.
results[i] = np.mean(fake_differences)

k = np.sum(np.abs(results) >= np.abs(observed_mdiff))
kk = k / n_trials
print('Sign-flip p null-world abs >= abs observed:', kk)

Sign-flip p null-world abs >= abs observed: 0.0271

Notice that the sign-flip test, in which we preserve the information about the patients / cars,
is much more convincing than the permutation or bootstrap tests above, where we choose to
ignore that information.

This can occur when the values within the pairs (rows) are similar to each other, but less
similar across different pairs (rows).

End of notebook: Paired differences solution

paired_differences_solution starts at Note 90.

A.2 Solution to seatbelt proportions exercise 24.3.2

Note 91: Notebook: Seatbelt proportion solution

• Download notebook
• Interact
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import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

pittsburgh = np.repeat(['seatbelt', 'none'], [36, 36])
n_pitts = len(pittsburgh)
chicago = np.repeat(['seatbelt', 'none'], [77, 52])
n_chicago = len(chicago)

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
fake_pitts = rnd.choice(pittsburgh, size=n_pitts)
fake_chicago = rnd.choice(chicago, size=n_chicago)
fake_p_pitts = np.sum(fake_pitts == 'seatbelt') / n_pitts
fake_p_chicago = np.sum(fake_chicago == 'seatbelt') / n_chicago
fake_p_diff = fake_p_pitts - fake_p_chicago
results[i] = fake_p_diff

plt.hist(results, bins=25)
plt.title('Bootstrap distribution of p differences')
plt.xlabel('Bootstrap p differences')

p_limits = np.quantile(results, [0.025, 0.975])

print('95% percent limits for p differences:', p_limits)

95% percent limits for p differences: [-0.24386305 0.04521964]
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End of notebook: Seatbelt proportion solution

seatbelt_proportion_solution starts at Note 91.

A.3 Solution for unemployment percentage 27.8.1

In a sample of 200 people, 7 percent are found to be unemployed. Determine a 95 percent
confidence interval for the true population proportion.

Note 92: Notebook: Unemployment percent solution

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
fake_people = rnd.choice(['no job', 'job'], size=200, p=[0.07, 0.93])
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p_unemployed = np.sum(fake_people == 'no job') / 200
results[i] = p_unemployed

plt.hist(results, bins=25)
plt.title('Bootstrap distribution p unemployed')
plt.xlabel('Bootstrap p unemployed')

p_limits = np.quantile(results, [0.025, 0.975])

print('95% percent limits for p differences:', p_limits)

95% percent limits for p differences: [0.035 0.105]
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End of notebook: Unemployment percent solution

unemployment_percent_solution starts at Note 92.

A.4 Solution for battery lifetime 27.8.2

A sample of 20 batteries is tested, and the average lifetime is 28.85 months. Estab-
lish a 95 percent confidence interval for the true average value. The sample values
(lifetimes in months) are listed below.
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We use the “bootstrap” technique of drawing many bootstrap re-samples with replacement
from the original sample, and observing how the re-sample means are distributed.

Note 93: Notebook: Battery lifetime solution

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

lifetimes = np.array([30, 32, 31, 28, 31, 29, 29, 24, 30, 31,
28, 28, 32, 31, 24, 23, 31, 27, 27, 31])

print('Mean is:', np.mean(lifetimes))

Mean is: 28.85

n_lifetimes = len(lifetimes)
results = np.zeros(n_trials)

for i in range(n_trials):
# Draw 20 lifetimes from "lifetimes, randomly and with replacement.
fake_lifetimes = rnd.choice(lifetimes, size=n_lifetimes)
# Find the average lifetime of the 20.
fake_mean = np.mean(fake_lifetimes)
# Keep score.
results[i] = fake_mean

plt.hist(results, bins=25)
plt.title('Bootstrap distribution of mean battery lifetimes')
plt.xlabel('Bootstrap mean battery lifetime')

mean_limits = np.quantile(results, [0.025, 0.975])

print('95% percent limits for mean lifetimes:', mean_limits)

95% percent limits for mean lifetimes: [27.65 29.95]
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End of notebook: Battery lifetime solution

battery_lifetime_solution starts at Note 93.

A.5 Solution for optical density 27.8.3

Note 94: Notebook: Optical density solution

• Download notebook
• Interact

import numpy as np
import matplotlib.pyplot as plt

rnd = np.random.default_rng()

Suppose we have 10 measurements of Optical Density on a batch of HIV negative control
samples:

density = np.array(
[.02, .026, .023, .017, .022, .019, .018, .018, .017, .022])

Derive a 95 percent confidence interval for the sample mean. Are there enough measurements
to produce a satisfactory answer?
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n_density = len(density)

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
fake_density = rnd.choice(density, size=n_density)
results[i] = np.mean(fake_density)

plt.hist(results, bins=25)
plt.title('Bootstrap distribution of density means')
plt.xlabel('Bootstrap density means')

mean_limits = np.quantile(results, [0.025, 0.975])

print('95% percent limits for density mean:', mean_limits)

95% percent limits for density mean: [0.0185 0.022 ]

0.018 0.019 0.020 0.021 0.022 0.023
Bootstrap density means

0

200

400

600

800

1000

1200

Bootstrap distribution of density means

End of notebook: Optical density solution

optical_density_solution starts at Note 94.
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A.6 Solution for voter participation 29.7.1

The observed correlation coefficient between voter participation and spread is moderate and
negative. Is this more negative that what might occur by chance, if no correlation exists in
some underlying population, from which this sample was taken?

1. Create two groups of paper cards: 25 with participation rates, and 25 with the spread val-
ues. Arrange the cards in pairs in accordance with the table, and compute the correlation
coefficient between the shuffled participation and spread variables.

2. Shuffle one of the sets, say that with participation, and compute correlation between
shuffled participation and spread.

3. Repeat step 2 many, say 1000, times. Compute the proportion of the trials in which
correlation was at least as negative as that for the original data.

Note 95: Notebook: Voter participation in 1844 election

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

rnd = np.random.default_rng()

voter_df = pd.read_csv('data/election_1844.csv')
participation = np.array(voter_df['Participation'])
spread = np.array(voter_df['Spread'])

# Compute correlation. It's -0.425.
actual_r = np.corrcoef(participation, spread)[0, 1]
actual_r

np.float64(-0.4249067562318352)

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
# Shuffle the participation rates.
shuffled = rnd.permuted(participation)
# Compute re-sampled correlation.
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fake_r = np.corrcoef(shuffled, spread)[0, 1]
# Keep the value in the results.
results[i] = fake_r

plt.hist(results, bins=25)
plt.title('Distribution of shuffled correlations')
plt.xlabel('Correlation with shuffled participation')

# Count the trials when result <= observed.
k = np.sum(results <= actual_r)
# Compute the proportion of such trials.
kk = k / n_trials

print('Proportion of shuffled r <= observed:', np.round(kk, 2))

Proportion of shuffled r <= observed: 0.03
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End of notebook: Voter participation in 1844 election

voter_participation_solution starts at Note 95.

From this we may conclude that the voter participation rates probably are negatively related
to the vote spread in the election. The actual value of the correlation (-.425) cannot be
explained by chance alone. In our Monte Carlo simulation of the null-hypothesis a correlation
that negative is found only about 3 percent of the time.

See: Section A.6.
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A.7 Solution for association of runs and strikeouts 29.7.2

We are looking at the correlation of home runs and strikeouts for major-league baseball play-
ers.

The instructions ask us to start here with the sum-of-products measure.

Note 96: Notebook: Homeruns and strikeout sum of products.

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

homeruns = np.array([14, 20, 0, 38, 9, 38, 22, 31, 33,
11, 40, 5, 15, 32, 3, 29, 5, 32])

strikeout = np.array([135, 153, 120, 161, 138, 175, 126, 200, 205,
147, 165, 124, 169, 156, 36, 98, 82, 131])

# The sum of products approach.
actual_sop = np.sum(homeruns * strikeout)

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
shuffled_runs = rnd.permuted(homeruns)
fake_sop = np.sum(shuffled_runs * strikeout)
results[i] = fake_sop

plt.hist(results, bins=25)
plt.title('Distribution of shuffled sum of products')
plt.xlabel('Sum of products for shuffled homeruns')

k = np.sum(results >= actual_sop)
kk = k / n_trials

print('p shuffled sum of products >= actual:', np.round(kk, 3))

p shuffled sum of products >= actual: 0.003
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Interpretation: In 10,000 simulations, random shuffling very rarely produced a value as high
as observed. Therefore, we conclude that random chance could not reasonably be responsible
for the observed degree of correlation.

End of notebook: Homeruns and strikeout sum of products.

homerun_sop_solution starts at Note 96.

A.8 Solution for runs, strikeouts and correlation coefficient 29.7.3

Again, we are looking at the correlation of home runs and strikeouts for major-league baseball
players. This time we will use the correlation coefficient (𝑟) measure.

Note 97: Notebook: Homeruns and strikeout correlation

• Download notebook
• Interact

import numpy as np

rnd = np.random.default_rng()

homeruns = np.array([14, 20, 0, 38, 9, 38, 22, 31, 33,
11, 40, 5, 15, 32, 3, 29, 5, 32])
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strikeout = np.array([135, 153, 120, 161, 138, 175, 126, 200, 205,
147, 165, 124, 169, 156, 36, 98, 82, 131])

# The correlation approach.
actual_r = np.corrcoef(homeruns, strikeout)[0, 1]

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
shuffled_runs = rnd.permuted(homeruns)
fake_r = np.corrcoef(shuffled_runs, strikeout)[0, 1]
results[i] = fake_r

plt.hist(results, bins=25)
plt.title('Distribution of shuffled r')
plt.xlabel('r for shuffled homeruns')

k = np.sum(results >= actual_r)
kk = k / n_trials

print('p shuffled r >= actual:', np.round(kk, 3))

p shuffled r >= actual: 0.003

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
r for shuffled homeruns

0

200

400

600

800

1000
Distribution of shuffled r
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Interpretation: a correlation coefficient as high as the observed value (.62) occurred only about
0.3% of the time by chance. Hence, provisionally, we choose to reject chance as an explanation
for such a high value of the correlation coefficient.

Notice, we get the same answer for correlation coefficients as we do for sum of products. In
fact, correlation coefficients must give us the same answer (apart from random variation from
the permutation), as the tests of association are equivalent when we compare between different
orderings of the same sequences.

End of notebook: Homeruns and strikeout correlation

homerun_correlation_solution starts at Note 97.

A.9 Solution for money and exchange rate 29.7.4

Note 98: Notebook: Exchange rates and money supply

• Download zip with notebook + data file
• Interact

import numpy as np
import pandas as pd

rnd = np.random.default_rng()

exchange_df = pd.read_csv('data/exchange_rates.csv')
exchange_rates = np.array(exchange_df['exchange_rate'])
money_supply = np.array(exchange_df['money_supply'])

# Correlation.
actual_r = np.corrcoef(exchange_rates, money_supply)[0, 1]
actual_r

np.float64(0.4206068712932843)

n_trials = 10_000
results = np.zeros(n_trials)

for i in range(n_trials):
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shuffled_rates = rnd.permuted(exchange_rates)
fake_r = np.corrcoef(shuffled_rates, money_supply)[0, 1]
results[i] = fake_r

plt.hist(results, bins=25)
plt.title('Distribution of shuffled exchange rates r values')
plt.xlabel('r for shuffled exchange rate')

k = np.sum(results >= actual_r)
kk = k / n_trials

print('p shuffled r >= actual:', np.round(kk, 3))

p shuffled r >= actual: 0.0

0.4 0.2 0.0 0.2 0.4
r for shuffled exchange rate

0
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400

600

800

1000

Distribution of shuffled exchange rates r values

End of notebook: Exchange rates and money supply

exchange_rates_solution starts at Note 98.

Interpretation: The observed correlation (.42) between the exchange rate and the money
supply is seldom exceeded by random experiments with these data. Thus, the observed result
0.42 cannot be reasonably explained by chance alone and we conclude that it is statistically
surprising.

638



B Technical Note to the Professional Reader

The material presented in this book fits together with the technical literature as follows:
Though I (JLS) had proceeded from first principles rather than from the literature, I have
from the start cited work by Chung and Fraser (1958) and Meyer Dwass (1957) They suggested
taking samples of permutations in a two-sample test as a way of extending the applicability of
Fisher’s randomization test (1935; 1960, chap. III, section 21). Resampling with replacement
from a single sample to determine sample statistic variability was suggested by Simon (1969).
Independent work by Efron (1979) explored the properties of this technique (Efron termed it
the “bootstrap”) and lent it theoretical support. The notion of using these techniques routinely
and in preference to conventional techniques based on Gaussian assumptions was suggested
by Simon (1969) and by Simon, Atkinson, and Shevokas (1976).
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D Code topics

This appendix gathers together links to parts of the book that cover various code topics in
Python:

• Comments: Note 2 and Note 8.
• Variables: Section 4.7.
• Types of values in Python: Section 7.3.

– Lists in Python: Section 7.3.2.
– Arrays: Section 7.3.1.

• array length: Section 6.5.
• Indexing into arrays with integers: Section 6.6.
• Selecting multiple elements from arrays with slicing: Section 10.2.
• Strings — values containing text: Section 7.4.
• Randomness from your computer: Section 2.2.
• Numpy’s random number generator: ?@nte-numpy-rng.
• Types of brackets in Python: Note 4.
• Squaring values and arrays: Section 16.7.1.
• Introducing functions: Section 5.7.
• Named arguments to functions: Section 5.8.
• Functions and methods: Note 6.
• Ranges (continuous sequences) of integers: Section 5.9.
• range in Python (compared to np.arange): Section 5.10.
• Advanced ranges (for example, using floating point values), using np.arange: Note 45.
• Repeating elements of an array with np.repeat: Section 7.6}
• The absolute function (np.abs) to convert all values to positive: Note 38.
• for loops: Section 6.6.2.
• if statements: Section 8.10.
• Python modules and submodules: Note 24.
• Finding number of repeats using np.bincount: Section 11.6
• Combining Boolean arrays with &: Section 10.6
• range in Python for loops: Section 6.6.3
• Testing whether all elements of an array are the same using np.all: Note 30
• Plotting and histograms (and histogram bins and bin edges): Section 12.15.2.
• Shuffling arrays with rnd.permuted: Section 8.14.
• Choosing values at random with np.choice: Section 5.11.
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• Counting True values with sum: Section 5.14.
• Making arrays by random resampling with np.choice: Section 5.12.
• Underscores in Python integers: Note 43.
• Building strings with format-strings: Section 21.1.1.
• What is an operator?: Note 51.
• Logical operators — or, and: Section 23.1.
• Concatenating arrays: Section 12.15.1.
• The Comma-Separated-Values (CSV) file format for data tables: Section 16.1.1.
• Introducing the Pandas Python data science library: Section 16.1.2.
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E Errors and suggestions

We are hoping that you have arrived at this chapter because you have found an error in the
book, or you have thought of an improvement that you would like to share.

There are two ways of letting us know about errors or fixes.

E.1 The easiest way — making an issue

The simplest method is to make a new “issue” using the Github website interface that we
use to house the book. To do this, go to https://github.com/resampling-stats/resampling-
with/issues, and click on the green “New Issue” button. Fill in as much information as you
can think of about the error or fix or other improvement, and click “Submit new issue”. In
particular, please make sure to tell us the chapter and page number (from the PDF), or the
web address of the text with the error. We will try to respond quickly.

E.2 Note on licensing

Please bear in mind that we have — with permission — released the book under a Creative
Commons attribution / non-commercial license. In order to preserve our ability to keep using
this license, we will assume that you will accept that license for any fixes or improvements that
you send us. If that is not true, please let us know in your issue or pull-request (see below).

E.3 More advanced — making a pull request

If you have some more time, and experience, you might consider sending us your suggested
changes as a pull-request.

As background, we have written this edition of the book in a set of computer text files. In
these text files, we use conventions from a definition called Markdown to indicate things like
bold and italic formatting, as well as links (like the one above), and other things.

We then use some software called Quarto to take the collection of text files, and build them
into the book — both in HTML (web page) format, and in PDF format.
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This is relevant, because we have stored all the text files and the instructions to build the
book at the Github repository at https://github.com/resampling-stats/resampling-with. If
you have some experience of using such repositories, we would be very grateful if you would
consider making a fork of the repository and making a pull-request from this fork. If you
don’t know what these terms mean, don’t worry, and consider submitting an issue instead (see
above).

If you don’t know these terms, and you are interested to learn, we suggest you use your search
engine to look for “Github fork pull-request” (without quotes) to start your research.

Please have a look at the README.md file in the repository for some instructions, and feel free
to contact us to ask for help, either by an issue (above) or by email.

If you do submit a pull-request, please note the comment above (Section E.2) about the book
license.
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